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Alignment Procedure

Four steps:

• With the multipole magnets switched Off

1) Orbit Correction (1-to-1)

2) Orbit + Target Dispersion Steering

• Beam-based centering of the multipole magnets

3) Multipole-shunting, one by one

• With the multipole magnets On

4) Orbit + Target Dispersion–Coupling–Beta-Beating Steering

⇒ A more detailed explanation of this method can be found in the Proceedings of LINAC10:

A. Latina, MOP026, LINAC10.



Basic Equations

Given a system:

y = f (x) (1)

its Taylor expansion around x0,y0 = f(x0) is

y = y0 +
∂f

∂x

∣∣∣∣
x0

(x− x0) + . . . (2)

A =
∂f

∂x

∣∣∣∣
x0

is the Jacobian, or response matrix, of the system.

The linear approximation of eq. (1) around (x0,y0) is therefore:

y ≈ y0 + A (x− x0) (3)



Linear Approximation and Least Squares Method

This is our “model”:

y = y0 + A (x− x0)

Where, in our case:

x : is the vector of the correctors
y : is the vector of the observables
A : is the response matrix
x0,y0 : is the central point :

correctors to zero → observables for the reference trajectory

⇒ the observables we will use are: orbit, dispersion, beta-beating and coupling.

Given an arbitrary system configuration, y = yMeasured, the corresponding correctors, x, that match

this status, can be found solving the least squares minimization of the function:

χ2 = ‖ yMeasured − [y0 + A(xUnknown − x0)] ‖ 2



Least Squares Method and Singular Value Decomposition

The solution, x, of the previous equation is given by
∂χ2

∂x
= 0:

yM − y0 = A (x− x0)

Being x0 = 0,

yM − y0 = A x

The matrix A is likely not squared, having usually more observables than correctors→ the system is
overdetermined. One way to solve overdetermined systems is to use the Singular Value Decomposition
of this matrix.

The solution is:

x = A†(yM − y0)

where A† is the pseudo-inverse of A in the SVD-sense.



Beam Delivery System

In this context the correctors, x, are called

θx horizontal correctors
θy vertical correctors

whereas the observables, y, are:

bx horizontal bpm readings
by vertical bpm readings

ηx horizontal dispersion at each bpm
ηy vertical dispersion at each bpm

βx horizontal beta− beating at each bpm
βy vertical beta− beating at each bpm

Cx horizontal coupling at each bpm
Cy vertical coupling at each bpm



How to Measure Dispersion, Coupling and Beta-Beating (1/2)

To measure the dispersion, it is necessary to use one or more test-beams with different energies.

We used two test beams with energy difference δ = ±0.005:

η =
b+δ − b−δ

2δ

To measure the horizontal beta-beating, it is necessary to have the first corrector kicking in

x = ±1, then measure the horizontal response of the system:

βx =
bx|θ1,x=+1

− bx|θ1,x=−1

2∆θ1,x

To measure the vertical beta-beating, it is necessary to have the first corrector kicking in y = ±1,

then measure the vertical response of the system:

βy =
by|θ1,y=+1

− by|θ1,y=−1

2∆θ1,y



How to Measure Dispersion, Coupling and Beta-Beating (2/2)

To measure the horizontal coupling, it is necessary to have the first corrector kicking in y = ±1,

then measure the horizontal response of the system:

Cx =
bx|θ1,y=+1

− bx|θ1,y=−1

2∆θ1,y

To measure the vertical coupling, it is necessary to have the first corrector kicking in x = ±1, then

measure the vertical response of the system:

Cy =
by|θ1,x=+1

− by|θ1,x=−1

2∆θ1,x

⇒ Notice that to obtain these 6 quantities,

ηx,ηy︸ ︷︷ ︸
δ=±0.5%

,βx,Cx︸ ︷︷ ︸
θ1,x=±1

,βy,Cy︸ ︷︷ ︸
θ1,y=±1

,

a total of six measurements is required.



Alignment Algorithm (1/2)

Multipoles OFF

1) Orbit correction (
bx

by

)
=

(
Rxx 0
0 Ryy

)(
θx

θy

)

2) Target Dispersion Steering
bx

by

ηx − η0,x

ηy − η0,y

 =


Rxx 0
0 Ryy

Dxx 0
0 Dyy

( θx

θy

)

⇒ it requires one or two test beams, with E = E0 (1± 0.005), to measure the dispersion.



Alignment Algorithm (2/2)

Multipoles ON

3) Beam-based centering of each individual multipolar element (see later for details)

4) Coupling and Beta-Beating Steering

bx

by

ηx − η0,x

ηy − η0,y

βx − β0,x

βy − β0,y

Cx

Cy


=



Rxx 0
0 Ryy

Dxx 0
0 Dyy

Bxx 0
Byx 0
0 Cxy

0 Cyy


(

θx

θy

)

⇒ it requires four shots -nominal energy- with the first corrector ON, ∆θ1,x|y = ±small kick, to
measure beta-beating and coupling.



Orbit Response Matrix

Jacobian of the system:

R =
∂b

∂θ
; Rij =

bi;+∆θj − bi;−∆θj

2∆θj

Response matrices: Rxx, Ryy

Target Responses:
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Dispersion Response Matrix

Jacobian of the system:

D =
∂η

∂θ
=

ηi;+∆θj − ηi;−∆θj

2∆θj
=

∂

∂θ

∂b

∂E

Response matrices: Dxx, Dyy

Target Responses:
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Beta-Beating Response Matrix

Jacobian of the system:

Bx|y =
∂β

∂θ
=

∂

∂θ

∂bx|y

∂θ1,x|y

Response matrices: Bxx, Byx

Target Responses:
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Coupling Response Matrix

Jacobian of the system:

Cx|y =
∂c

∂θ
=

∂

∂θ

∂bx|y

∂θ1,y|x

Response matrices: Cxy, Cyy

Target Responses:
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The Actual Systems of Equations

For simplicity I did not mention that we have also:

- the ω-terms, ie. the weights

- the SVD-term β to control and limit the amplitude of the correction

So the actual systems of equations are the following:

1) Target Dispersion Steering b
ω1 · (η − η0)

0

 =

 R
ω1 · D
β · I

( θx

θy

)

2) Coupling and Beta-Beating Steering:
b

ω2 · (η − η0)
ω3 · (β − β0)
ω3 · C

0

 =


R

ω2 · D
ω3 · B
ω3 · C
β · I


(

θx

θy

)

⇒ We have four degrees of freedom to tune: ω1, ω2, ω3 and β .



Beam-Based Centering of the Multipoles

Sextupoles, Octupoles and Decapoles can strongly deflect the beam when they are off-centered.

The kick that they induce depends on the difference between the beam position and the magnetic
center of the magnet: dx, dy.

We scan, horizontally and vertically, the position of each multipole and register the change in beam
position at the downstream bpms. We scan in the range dx, dy ∈ [−0.5, 0.5] mm.

1) Sextupoles

∆x′ = −1

2

SN

Bρ

(
dx2 − dy2

)
;

∆y′ = +
SN

Bρ
dx dy

a parabolic fit in x and y gives dx and dy



Beam-Based Centering of the Multipoles

2) Octupoles

∆x′ = −1

6

SN
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(
dx3 − 3dx dy2

)
;

∆y′ = +
1

6
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(
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)
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This curve is a cubic, therefore its first derivative is a parabola. A parabolic fit of its derivative, in
x and y, gives dx and dy

3) Decapoles

∆x′ = − 1

24
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(
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)
;

∆y′ = +
1
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This curve is a parabola squared. A parabolic fit of its square root, in x and y, gives dx and dy



Multipoles Response Matrix

Jacobian of the system:

S =
∂b

∂θ

Response matrices: Sxx, Syy

Target Responses:
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Simulation Setup

• CLIC BDS, L∗ = 3.5 m

• Misalignment 10 µm RMS for:

- quadrupoles: x and y

- multipoles: x and y

- bpms: x and y

• Added two BPMs:

- one at the IP

- one 3.5 meters downstream the IP (might this be the same used for the IP-Feedback?)

• bpm resolution:

- 10 nm

- Apertures are not taken into account / synchrotron radiation emission is not taken into account

⇒ All simulations have been carried out using placet-octave



Parameters Optimization (No Synrad)

• Each point is the average of 100 seeds; σbpm = 10 nm
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⇒ The minimum is for β = 11.45 at σy = 3.49 nm

⇒ The omegas are: ω1 = 9.5, ω2 = 1.0, ω3 = 1370.0



Results for 1000 seeds (No Synrad)

• Histograms of final vertical beamsizes for a 1000 seeds, σbpm = 10 nm
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• Final beamsize after each stage of optimization:

- Orbit Correction = 455.2 nm

- Target Dispersion Steering = 102.0 nm

- Full Alignment Procedure = 4.38 nm



Results for 1000 seeds (No Synrad)

• Histograms of final horizontal beamsizes for a 1000 seeds, σbpm = 10 nm
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• Final beamsize after each stage of optimization:

- Orbit Correction = 2500 nm

- Target Dispersion Steering = 392.0 nm

- Full Alignment Procedure = 40.0 nm



Results for 1000 seeds (No Synrad)

• Average final vertical emittance along the line for a 1000 seeds, σbpm = 10 nm
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• Final emittances after each stage of optimization:

- Orbit Correction = 28.7 µm

- Target Dispersion Steering = 2.6 µm

- Full Alignment Procedure = 130.6 nm



Convergence of the algorithm

Standard misalignments, no SR emission in the final doublet, 100 seeds
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- Final beamsize was σx = (1635.0± 1.0) nm, σy = (20.0± 1.0) nm

⇒ SEE: At the very minimum: σx = 876 nm, σy = 3.5 nm

⇒ Remark: with multipole-shunting, beamsize improves drastically.



Improved Multipole-Shunting

⇒ the old version aligned 1 multipole at time (magnet turned ON – alignment – magnet turned
OFF)

⇒ the new version turns them ON 1 by 1, and keeps them ON, once they are powered (it does it
in two passes)



Convergence with the New Multipole-Shunting

Standard misalignments, no SR emission in the final doublet, 100 seeds
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- Final beamsize is σx = (96.0± 1.0) nm, σy = (7.25± 0.50) nm

⇒ After multipole-shunting #1: σx = 49.5 nm, σy = 6.4 nm

⇒ Remark: It is not so bad!



Conclusions

• A new technique has been introduced:

- it takes into account additional observables, such as coupling and β-beating, and

- it implements a new multipole-shunting technique

• The results are promising even if, in CLIC, synrad emission in the final doublet is a very serious
problem, that hasn’t fully been addressed yet

• It seems that a good alignment of the multipoles is essential
(sophisticated algorithms are needed – I have one, that perhaps can be improved)

⇒ More studies are required!


