CLIC FFS New Tuning Techniques

Andrea Latina, Fermilab

October 18-22, 2010
IWLC2010 - CERN, Geneva

- Alignment procedure
- Basic equations
- CLIC case
- Simulations results
- Summary and conclusions

Alignment Procedure

Four steps:

- With the multipole magnets switched Off

1) Orbit Correction (1-to-1)
2) Orbit + Target Dispersion Steering

- Beam-based centering of the multipole magnets

3) Multipole-shunting, one by one

- With the multipole magnets On

4) Orbit + Target Dispersion-Coupling-Beta-Beating Steering
\Rightarrow A more detailed explanation of this method can be found in the Proceedings of LINAC10:
A. Latina, MOP026, LINAC10.

Basic Equations

Given a system:

$$
\begin{equation*}
\mathbf{y}=\mathbf{f}(\mathrm{x}) \tag{1}
\end{equation*}
$$

its Taylor expansion around $\mathbf{x}_{\mathbf{0}}, \mathbf{y}_{\mathbf{0}}=\mathbf{f}\left(\mathbf{x}_{\mathbf{0}}\right)$ is

$$
\begin{equation*}
\mathbf{y}=\mathbf{y}_{\mathbf{0}}+\left.\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right|_{\mathbf{x}_{\mathbf{0}}}\left(\mathbf{x}-\mathbf{x}_{\mathbf{0}}\right)+\ldots \tag{2}
\end{equation*}
$$

$\mathbf{A}=\left.\frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right|_{\mathbf{x}_{\mathbf{0}}}$ is the Jacobian, or response matrix, of the system.

The linear approximation of eq. (1) around $\left(\mathbf{x}_{\mathbf{0}}, \mathbf{y}_{\mathbf{0}}\right)$ is therefore:

$$
\begin{equation*}
\mathbf{y} \approx \mathbf{y}_{\mathbf{0}}+\mathbf{A}\left(\mathbf{x}-\mathbf{x}_{\mathbf{0}}\right) \tag{3}
\end{equation*}
$$

Linear Approximation and Least Squares Method

This is our "model":

$$
\mathbf{y}=\mathrm{y}_{0}+\mathbf{A}\left(\mathrm{x}-\mathrm{x}_{\mathbf{0}}\right)
$$

Where, in our case:
$\mathrm{x}: \quad$ is the vector of the correctors
y : is the vector of the observables
A: is the response matrix
$\mathrm{x}_{\mathbf{0}}, \mathrm{y}_{\mathbf{0}}$: is the central point :
correctors to zero \rightarrow observables for the reference trajectory
\Rightarrow the observables we will use are: orbit, dispersion, beta-beating and coupling.

Given an arbitrary system configuration, $\mathbf{y}=\mathbf{y}_{\text {Measured }}$, the corresponding correctors, x , that match this status, can be found solving the least squares minimization of the function:

$$
\chi^{2}=\left\|\mathbf{y}_{\text {Measured }}-\left[\mathbf{y}_{0}+\mathbf{A}\left(\mathbf{x}_{\text {Unknown }}-\mathbf{x}_{0}\right)\right]\right\|^{2}
$$

Least Squares Method and Singular Value Decomposition

The solution, \mathbf{x}, of the previous equation is given by $\frac{\partial \chi^{2}}{\partial \mathbf{x}}=\mathbf{0}$:

$$
\mathbf{y}_{\mathrm{M}}-\mathbf{y}_{0}=\mathbf{A}\left(\mathbf{x}-\mathbf{x}_{0}\right)
$$

Being $\mathbf{x}_{0}=0$,

$$
\mathbf{y}_{\mathrm{M}}-\mathbf{y}_{\mathbf{0}}=\mathbf{A x}
$$

The matrix A is likely not squared, having usually more observables than correctors \rightarrow the system is overdetermined. One way to solve overdetermined systems is to use the Singular Value Decomposition of this matrix.

The solution is:

$$
\mathbf{x}=\mathbf{A}^{\dagger}\left(\mathbf{y}_{\mathbf{M}}-\mathbf{y}_{\mathbf{0}}\right)
$$

where \mathbf{A}^{\dagger} is the pseudo-inverse of \mathbf{A} in the SVD-sense.

Beam Delivery System

In this context the correctors, x , are called
$\theta_{x} \quad$ horizontal correctors
$\theta_{y} \quad$ vertical correctors
whereas the observables, \mathbf{y}, are:
$\mathbf{b}_{x} \quad$ horizontal bpm readings
$\mathbf{b}_{y} \quad$ vertical bpm readings
$\boldsymbol{\eta}_{x} \quad$ horizontal dispersion at each bpm
$\boldsymbol{\eta}_{y} \quad$ vertical dispersion at each bpm
$\boldsymbol{\beta}_{x} \quad$ horizontal beta - beating at each bpm
$\boldsymbol{\beta}_{y} \quad$ vertical beta - beating at each bpm
C_{x} horizontal coupling at each bpm
$\mathbf{C}_{y} \quad$ vertical coupling at each bpm

How to Measure Dispersion, Coupling and Beta-Beating (1/2)

To measure the dispersion, it is necessary to use one or more test-beams with different energies. We used two test beams with energy difference $\delta= \pm 0.005$:

$$
\boldsymbol{\eta}=\frac{b_{+\delta}-b_{-\delta}}{2 \delta}
$$

To measure the horizontal beta-beating, it is necessary to have the first corrector kicking in $x= \pm 1$, then measure the horizontal response of the system:

$$
\boldsymbol{\beta}_{x}=\frac{b_{x \mid \theta_{1, x=+1}}-b_{x \mid \theta_{1, x=-1}}}{2 \Delta \theta_{1, x}}
$$

To measure the vertical beta-beating, it is necessary to have the first corrector kicking in $y= \pm 1$, then measure the vertical response of the system:

$$
\boldsymbol{\beta}_{y}=\frac{b_{y \mid \theta_{1, y=+1}}-b_{y \mid \theta_{1, y=-1}}}{2 \Delta \theta_{1, y}}
$$

How to Measure Dispersion, Coupling and Beta-Beating (2/2)

To measure the horizontal coupling, it is necessary to have the first corrector kicking in $y= \pm 1$, then measure the horizontal response of the system:

$$
\mathbf{C}_{x}=\frac{b_{x \mid \theta_{1, y=+1}}-b_{x \mid \theta_{1, y=-1}}}{2 \Delta \theta_{1, y}}
$$

To measure the vertical coupling, it is necessary to have the first corrector kicking in $x= \pm 1$, then measure the vertical response of the system:

$$
\mathbf{C}_{y}=\frac{b_{y \mid \theta_{1, x=+1}}-b_{y \mid \theta_{1, x=-1}}}{2 \Delta \theta_{1, x}}
$$

\Rightarrow Notice that to obtain these 6 quantities,

$$
\underbrace{\boldsymbol{\eta}_{x}, \boldsymbol{\eta}_{y}}_{\delta= \pm 0.5 \%}, \underbrace{\boldsymbol{\beta}_{x}, \mathbf{C}_{x}}_{\theta_{1, x= \pm 1}}, \underbrace{\boldsymbol{\beta}_{y}, \mathbf{C}_{y}}_{\theta_{1, y= \pm 1}}
$$

a total of six measurements is required.

Alignment Algorithm (1/2)

Multipoles OFF

1) Orbit correction

$$
\binom{\mathbf{b}_{x}}{\mathbf{b}_{y}}=\left(\begin{array}{cc}
R_{x x} & 0 \\
0 & R_{y y}
\end{array}\right)\binom{\boldsymbol{\theta}_{x}}{\boldsymbol{\theta}_{y}}
$$

2) Target Dispersion Steering

$$
\left(\begin{array}{c}
\mathbf{b}_{x} \\
\mathbf{b}_{y} \\
\boldsymbol{\eta}_{x}-\boldsymbol{\eta}_{0, x} \\
\boldsymbol{\eta}_{y}-\boldsymbol{\eta}_{0, y}
\end{array}\right)=\left(\begin{array}{cc}
R_{x x} & 0 \\
0 & R_{y y} \\
D_{x x} & 0 \\
0 & D_{y y}
\end{array}\right)\binom{\boldsymbol{\theta}_{x}}{\boldsymbol{\theta}_{y}}
$$

\Rightarrow it requires one or two test beams, with $E=E_{0}(1 \pm 0.005)$, to measure the dispersion.

Alignment Algorithm (2/2)

Multipoles ON
3) Beam-based centering of each individual multipolar element (see later for details)
4) Coupling and Beta-Beating Steering

$$
\left(\begin{array}{c}
\mathbf{b}_{x} \\
\mathbf{b}_{y} \\
\boldsymbol{\eta}_{x}-\boldsymbol{\eta}_{0, x} \\
\boldsymbol{\eta}_{y}-\boldsymbol{\eta}_{0, y} \\
\boldsymbol{\beta}_{x}-\boldsymbol{\beta}_{0, x} \\
\boldsymbol{\beta}_{y}-\boldsymbol{\beta}_{0, y} \\
\mathbf{C}_{x} \\
\mathbf{C}_{y}
\end{array}\right)=\left(\begin{array}{cc}
R_{x x} & 0 \\
0 & R_{y y} \\
D_{x x} & 0 \\
0 & D_{y y} \\
B_{x x} & 0 \\
B_{y x} & 0 \\
0 & C_{x y} \\
0 & C_{y y}
\end{array}\right)\binom{\boldsymbol{\theta}_{x}}{\boldsymbol{\theta}_{y}}
$$

\Rightarrow it requires four shots -nominal energy- with the first corrector $\mathrm{ON}, \Delta \theta_{1, x \mid y}= \pm$ small kick, to measure beta-beating and coupling.

Orbit Response Matrix

Jacobian of the system:

$$
\mathbf{R}=\frac{\partial \mathbf{b}}{\partial \theta} ; \quad \mathbf{R}_{i j}=\frac{b_{i ;+\Delta \theta_{j}}-b_{i ;-\Delta \theta_{j}}}{2 \Delta \theta_{j}}
$$

Response matrices: $R_{x x}, R_{y y}$

Target Responses:

Dispersion Response Matrix

Jacobian of the system:

$$
\mathbf{D}=\frac{\partial \eta}{\partial \theta}=\frac{\eta_{i ;+\Delta \theta_{j}}-\eta_{i ;-\Delta \theta_{j}}}{2 \Delta \theta_{j}}=\frac{\partial}{\partial \theta} \frac{\partial \mathbf{b}}{\partial \mathbf{E}}
$$

Response matrices: $D_{x x}, D_{y y}$

Target Responses:

Beta-Beating Response Matrix

Jacobian of the system:

$$
\mathbf{B}_{\mathbf{x} \mid \mathbf{y}}=\frac{\partial \beta}{\partial \theta}=\frac{\partial}{\partial \theta} \frac{\partial \mathbf{b}_{\mathbf{x} \mid \mathbf{y}}}{\partial \theta_{1, \mathbf{x} \mid \mathbf{y}}}
$$

Response matrices: $B_{x x}, B_{y x}$

Target Responses:

Coupling Response Matrix

Jacobian of the system:

$$
\mathbf{C}_{\mathbf{x} \mid \mathbf{y}}=\frac{\partial \mathbf{c}}{\partial \theta}=\frac{\partial}{\partial \theta} \frac{\partial \mathbf{b}_{\mathbf{x} \mid \mathbf{y}}}{\partial \theta_{\mathbf{1 , \mathbf { y }} \mid \mathbf{x}}}
$$

Target Responses:

The Actual Systems of Equations

For simplicity I did not mention that we have also:

- the ω-terms, ie. the weights
- the SVD-term β to control and limit the amplitude of the correction

So the actual systems of equations are the following:

1) Target Dispersion Steering

$$
\left(\begin{array}{ll}
& \mathbf{b} \\
\omega_{1} & \binom{\left.\boldsymbol{\eta}-\boldsymbol{\eta}_{0}\right)}{\mathbf{0}}=\left(\begin{array}{rl}
& \mathbf{R} \\
\omega_{1} & \cdot \\
\mathbf{D}^{2} \\
\beta & \mathbf{I}
\end{array}\right)\binom{\boldsymbol{\theta}_{x}}{\boldsymbol{\theta}_{y}} .
\end{array}\right.
$$

2) Coupling and Beta-Beating Steering:

$$
\left(\begin{array}{ll}
& \mathbf{b} \\
\omega_{2} & \cdot\left(\boldsymbol{\eta}-\boldsymbol{\eta}_{0}\right) \\
\omega_{3} & \cdot\left(\boldsymbol{\beta}-\boldsymbol{\beta}_{0}\right) \\
\omega_{3} & \cdot \mathbf{C} \\
& \mathbf{0}
\end{array}\right)=\left(\begin{array}{rl}
& \mathbf{R} \\
\omega_{2} & \cdot \\
\mathbf{D} \\
\omega_{3} & \cdot \\
\omega_{3} \\
\omega_{3} & \cdot \mathbf{C} \\
\beta & \cdot \mathbf{I}
\end{array}\right)\binom{\boldsymbol{\theta}_{x}}{\boldsymbol{\theta}_{y}}
$$

\Rightarrow We have four degrees of freedom to tune: $\omega_{1}, \omega_{2}, \omega_{3}$ and β.

Beam-Based Centering of the Multipoles

Sextupoles, Octupoles and Decapoles can strongly deflect the beam when they are off-centered.

The kick that they induce depends on the difference between the beam position and the magnetic center of the magnet: dx, dy.

We scan, horizontally and vertically, the position of each multipole and register the change in beam position at the downstream bpms. We scan in the range $\mathrm{dx}, \mathrm{dy} \in[-0.5,0.5] \mathrm{mm}$.

1) Sextupoles

$$
\begin{aligned}
\Delta \mathrm{x}^{\prime} & =-\frac{1}{2} \frac{\mathrm{~S}_{\mathrm{N}}}{\mathrm{~B} \rho}\left(\mathrm{dx}^{2}-\mathrm{dy}^{2}\right) \\
\Delta \mathrm{y}^{\prime} & =+\frac{\mathbf{S}_{\mathrm{N}}}{\mathrm{~B} \rho} \mathrm{dx} \mathrm{~d} \mathbf{y}
\end{aligned}
$$

a parabolic fit in x and y gives $\mathrm{d} \mathbf{x}$ and $\mathrm{d} \mathbf{y}$

Beam-Based Centering of the Multipoles

2) Octupoles

$$
\begin{aligned}
& \Delta \mathrm{x}^{\prime}=-\frac{1}{6} \frac{\mathrm{~S}_{\mathrm{N}}}{\mathrm{~B} \rho}\left(\mathrm{dx}^{3}-3 \mathrm{dxd} \mathrm{y}^{2}\right) \\
& \Delta \mathrm{y}^{\prime}=+\frac{1}{6} \frac{\mathrm{~S}_{\mathbf{N}}}{\mathrm{B} \rho}\left(\mathrm{dx}{ }^{2} \mathrm{dy}-\mathrm{dy}^{3}\right)
\end{aligned}
$$

This curve is a cubic, therefore its first derivative is a parabola. A parabolic fit of its derivative, in x and y, gives $\mathrm{d} \mathbf{x}$ and $\mathrm{d} \mathbf{y}$
3) Decapoles

$$
\begin{aligned}
& \Delta \mathrm{x}^{\prime}=-\frac{1}{24} \frac{\mathrm{~S}_{\mathrm{N}}}{\mathrm{~B} \rho}\left(\mathrm{dx} \mathrm{x}^{4}-6 \mathrm{dx}^{2} \mathrm{dy}^{2}+\mathrm{dy}^{4}\right) \\
& \Delta \mathrm{y}^{\prime}=+\frac{1}{6} \frac{\mathrm{~S}_{\mathrm{N}}}{\mathrm{~B} \rho}\left(\mathrm{dx} \mathrm{x}^{3} \mathrm{~d} \mathbf{y}-\mathrm{dxd} \mathrm{y}^{3}\right)
\end{aligned}
$$

This curve is a parabola squared. A parabolic fit of its square root, in x and y, gives dx and $\mathrm{d} \mathbf{y}$

Multipoles Response Matrix

Jacobian of the system:

$$
\mathbf{S}=\frac{\partial \mathbf{b}}{\partial \theta}
$$

Target Responses:

Simulation Setup

- CLIC BDS, $L^{*}=3.5 \mathrm{~m}$
- Misalignment $10 \mu \mathrm{~m}$ RMS for:
- quadrupoles: x and y
- multipoles: x and y
- bpms: x and y
- Added two BPMs:
- one at the IP
- one 3.5 meters downstream the IP (might this be the same used for the IP-Feedback?)
-bpm resolution:
- 10 nm
- Apertures are not taken into account / synchrotron radiation emission is not taken into account
\Rightarrow All simulations have been carried out using placet-octave

Parameters Optimization (No Synrad)

- Each point is the average of 100 seeds; $\sigma_{\mathrm{bpm}}=10 \mathrm{~nm}$

\Rightarrow The minimum is for $\beta=11.45$ at $\sigma_{y}=3.49 \mathrm{~nm}$
\Rightarrow The omegas are: $\omega_{1}=9.5, \omega_{2}=1.0, \omega_{3}=1370.0$

Results for 1000 seeds (No Synrad)

- Histograms of final vertical beamsizes for a 1000 seeds, $\sigma_{\mathrm{bpm}}=10 \mathrm{~nm}$

- Final beamsize after each stage of optimization:
- Orbit Correction $=455.2 \mathrm{~nm}$
- Target Dispersion Steering $=102.0$ nm
- Full Alignment Procedure $=4.38 \mathrm{~nm}$

Results for 1000 seeds (No Synrad)

- Histograms of final horizontal beamsizes for a 1000 seeds, $\sigma_{\mathrm{bpm}}=10 \mathrm{~nm}$

- Final beamsize after each stage of optimization:
- Orbit Correction $=2500$ nm
- Target Dispersion Steering $=392.0$ nm
- Full Alignment Procedure $=40.0 \mathrm{~nm}$

Results for 1000 seeds (No Synrad)

- Average final vertical emittance along the line for a 1000 seeds, $\sigma_{\mathrm{bpm}}=10 \mathrm{~nm}$

- Final emittances after each stage of optimization:
- Orbit Correction $=28.7 \mu \mathrm{~m}$
- Target Dispersion Steering $=2.6 \mu \mathrm{~m}$
- Full Alignment Procedure $=130.6 \mathrm{~nm}$

Convergence of the algorithm

Standard misalignments, no SR emission in the final doublet, 100 seeds

- Final beamsize was $\sigma_{x}=(1635.0 \pm 1.0) \mathrm{nm}, \sigma_{y}=(20.0 \pm 1.0) \mathrm{nm}$
\Rightarrow SEE: At the very minimum: $\sigma_{x}=876 \mathbf{n m}, \sigma_{y}=3.5 \mathbf{n m}$
\Rightarrow Remark: with multipole-shunting, beamsize improves drastically.

Improved Multipole-Shunting

\Rightarrow the old version aligned 1 multipole at time (magnet turned ON - alignment - magnet turned OFF)
\Rightarrow the new version turns them ON 1 by 1 , and keeps them ON, once they are powered (it does it in two passes)

Convergence with the New Multipole-Shunting

Standard misalignments, no SR emission in the final doublet, 100 seeds

- Final beamsize is $\sigma_{x}=(96.0 \pm 1.0) \mathbf{n m}, \sigma_{y}=(7.25 \pm 0.50) \mathbf{n m}$
\Rightarrow After multipole-shunting \#1: $\sigma_{x}=49.5 \mathbf{n m}, \sigma_{y}=6.4 \mathbf{n m}$
\Rightarrow Remark: It is not so bad!

Conclusions

- A new technique has been introduced:
- it takes into account additional observables, such as coupling and β-beating, and
- it implements a new multipole-shunting technique
- The results are promising even if, in CLIC, synrad emission in the final doublet is a very serious problem, that hasn't fully been addressed yet
- It seems that a good alignment of the multipoles is essential (sophisticated algorithms are needed - I have one, that perhaps can be improved)
\Rightarrow More studies are required!

