

Searching for Quantum LOVE at the **A**ustralian **S**ynchrotron Light Source

Eugene Tan

On behalf of Rohan Dowd

Overview

- Motivation
- Lattice, Alignment and orbit correction
- LOCO method and Coupling minimisation
- Measurements
- Alternate skew configuration simulations
- Conclusions

Motivation

- As a light source, coupling manipulation was used "artificially" increase the lifetime by increasing coupling.
- Uncorrected coupling at ASLS was very small → how low can we go?
- Is Quantum LOVE (Limit Of Vertical Emittance) within our grasp?
- ASLS is now part of the ACAS (MOU with CLIC on damping ring work).
- Light source storage rings can be good test beds of techniques and technology – but it must benefit photon beam users also.

Lattice overview

Energy	3 GeV
Circumference	216 m
Current	200 mA
Momentum Compaction	0.002
ε _x (nominal)	10.4 nm∙rad

•Corrector and skew quad coils on sextupoles.

•Horizontal emittance reduced with dispersion in straights.

Optical Functions (ν_x = 13.29, ν_y = 5.22)

Alignment

- Vertical alignment error:
 - 26 μm Quadrupoles,
 - 18 µm Dipoles •
- Intrinsic Fiducial and assembly error:
 - 16 μm (Quad)
 - 6 μm (Dipole)
- Full ring realignment: ~yearly.
- 'natural' emittance coupling has changed each alignment, not always for the better!
 - 2008 0.1%
 - 2009 0.06%
 - 2010 (Feb.) 0.18%
 - 2010(Sep.) 0.29%

BPM resolution and Beam Based Alignment

- •Libera BPM electronics
- •BPM resolution ~0.1 um (rms)
- •Resolution of BBA is ~10 um.
- •BPM mechanical alignment resolution <20 um
- •RMS orbit deviation typically: <20 µm Horizontal, <10 Vertical

LOCO (Linear Optics from Closed Orbits)

- Adjusts the linear parameters in the model to fit real machine data.
- Data used: corrector orbit response and dispersion response.
- Model response Measured machine response = Error
- Minimise error by adjusting a set of model parameters.
- Fit Parameters normally include:
 - BPM/Corrector gains and coupling
 - Corrector gains and coupling
 - Quadrupole strengths
 - Skew Quadrupole strengths

0.01 0.01 -0.01 -0.01 BPM Coupling BPM Coupling BPM -0.03 Coupling -0.0 -0.03 -0.04-0.04 -0.05 _0.05└___ -0.06 0 20 40 60 80 100 20 40 60 80 100 BPM Number BPM number x 10⁻⁴ LOCO Parameter Fits for Field: QDA.PolynomA x 10⁻⁴ LOCO Parameter Fits for Field: QFA.PolynomA 2 5 0 -5 -4 -10 -6 -15 -8 -20 -10 215 225 190 205 220 230 235 185 195 200 210 Parameter Number Parameter Number

LOCO - Outputs

- BPM Gains
- BPM couplings
- Skew components
- Quad Strengths
- Corrector gains/tilts
- Full Calibrated model

Eugene Tan – IWLC 2010, Genega

Emittance Coupling minimisation

- Emittance coupling calculated from LOCO Calibrated model (using beam envelope calculation from particle tracking).
- Minimisation algorithm used to adjust skew quads to achieve arbitrary emittance ratios.

Set Coupling	LOCO Measured Coupling	Calculated ε _y (pm)
0.0%	0.009%	0.9
0.1%	0.12%	12.2
0.2%	0.23%	23.5
0.3%	0.33%	33.7
0.4%	0.43%	43.9
0.5%	0.54%	55.1
0.6%	0.64%	65.3
0.7%	0.74%	75.5
0.8%	0.84%	85.7
0.9%	0.92%	93.8
1.0%	1.04%	106.1

Model Check - Local Beam tilt

Compare local beam tilt at the X-ray Pinhole source against calibrated model prediction to cross-check the results of the calibrated model.

Tune Crossing

• Separation of Horizontal and Vertical tunes when brought to difference resonance will indicate the level of betatron coupling:

$$g = \frac{(|C|/\Delta)^2}{(|C|/\Delta)^2 + 2}$$

• Be careful about Chromaticity!

Model Total coupling	Measured Separation	Measured β Coupling
0.011%	0.0008± .0002	0.006 ± .003%
0.074%	0.0024± .0002	0.053± .007%
0.125%	0.0034± .0002	0.105± .010%
0.223%	0.0046± .0002	0.193± .013%
0.406%	0.0066± .0002	0.396± .018%
0.748%	0.0091±.0002	0.750± .021%
0.905%	0.0097±.0002	0.852± .026%

0.29

Model Comparison with tune crossing results

Calculated ε_y from model should agree with measured betatron coupling plus the vertical dispersion results.

Model ε _γ (pm)	ε _y from measured η _y (pm)	ε _y from Betatron Coupling (pm)	Total (pm)	Difference (model – measured)
1.05 ± 0.03	0.73 ± 0.03	0.59 ± 0.30	1.32 ± 0.30	0.27 ± 0.30
7.55 ± 0.23	1.73 ± 0.07	5.41 ± 0.71	7.14 ± 0.71	0.41 ± 0.75
12.75 ± 0.38	2.14 ± 0.09	1071 ± 1.02	12.85 ± 1.02	0.10 ± 1.09
22.75 ± 0.68	2.04 ± 0.08	19.69 ± 1.33	21.72 ± 1.33	1 03 ± 1.49
41.41 ± 1.24	1.73 ± 0.07	40.39 ± 1.84	42.23 ± 1.84	0.82 ± 2.22
76.30 ± 2.23	2.96 ± 0.12	76.50 ± 2.14	78.64 ± 2.14	2.34 ± 3.09
92.31 ± 2.77	2.24 ± 0.09	86.90 ± 2.65	89.55 ± 2.65	2.76 ± 3.83

Tousheck Lifetime vs RF

• By taking single bunch lifetime over extended period the Tousheck component of the lifetime can be extracted.

$$\frac{1}{\tau} = \frac{Nr_e^2 c}{8\pi\sigma_z \gamma^2} \left\langle \frac{D(\varepsilon)}{\delta_{\max}^3 \sigma_x \sigma_y} \right\rangle, \varepsilon = \left(\frac{\delta_{\max} \beta_x}{\gamma \sigma_x}\right),$$
$$D(\varepsilon) = \sqrt{\varepsilon} \left(-\frac{3}{2} e^{-\varepsilon} + \frac{\varepsilon}{2} \int_{\varepsilon}^{\infty} \frac{e^{-u} \ln(u)}{u} du + \frac{1}{2} (3\varepsilon - \varepsilon \ln(\varepsilon) + 2) \int_{\varepsilon}^{\infty} \frac{e^{-u}}{u} du \right)$$

$$\frac{di}{dt} = -\frac{i}{a} - \frac{i^2}{b}$$
$$i(t) = \frac{i_0 b e^{-\frac{1}{a}}}{b + i_0 a (1 - e^{-\frac{1}{a}})}$$

Eugene Tan – IWLC 2010, Genega

Tousheck Lifetime vs RF

- Tousheck component will change with RF voltage.
- Measurements taken at 3 settings – 0.01% (min), 0.06%(uncorrected) and 0.1% emittance coupling.
- 2.1% energy acceptance (measured)
- Curve fit by varying ϵ_y/ϵ_x , other values fixed.
- Blue curve fit corresponds to $\epsilon_y = 1.24 \pm 0.3 \text{ pm}$

Alternate skew quad configurations

Simulations of different skew configurations have been performed to find optimal configuration.

Note: Measured ε_y > simulated ε_y (~x1.6)

Skew Config.	Simulated Minimised coupling	Simulated Dispersion (mm)
Nominal 28 skews	0.00696% (0.7pm)	2.49
56 skews	0.00291% (0.3 pm)	1.02
28 even	0.00674% (0.7pm)	1.51
28 odd	0.00571% (0.6pm)	1.32

Conclusions

- Low uncorrected coupling achieved by good mechanical and beam based alignment.
- LOCO is an effective tool for coupling measurements and manipulations.
- The more skew quadrupoles, the better possible correction as coupling can be cancelled locally. Skew quads in dispersion regions are important to control the dispersion.
- Tune crossing and Tousheck Lifetime Analysis indications give: $\underline{\epsilon_v} \sim 1.2 \pm 0.3 \text{ pm}$
- Improvements possible with mechanical re-alignment and/or changes to the skew quadrupole configuration.

http://www.synchrotron.org.au

http://www.accelerators.org.au

Thank You

Additional Slides

Model Check – Dispersion Minimisation

- Same method used to minimise vertical dispersion only
- Clear reduction found in dispersion, but linear coupling increases.
- εy/εx ~ 0.9%
- Vertical dispersion reduced from 3.4mm to 0.9mm (rms)

Where are we?

Storage Ring Overview

Operations:

- Operational since April 2007
- 9 beamlines
- 1000+ users
- 5000+ hr user beamtime per year

Machine:

- 3 GeV storage ring
- Full energy injection
- 200 mA
- 35 hr lifetime
- *f*_{RF} =500 MHz
- Circ. 216 m
- *f*_{rev} =1.39 MHz
- Harmonic # 360

Australian Synchrotron								
Control Roon Beam Current 180.6 mA	n / Duty Office Beam Lifetime 35.1 Hrs	er Extn 123 Current x Lifetime 6.35 AHrs	Beam Mode: Integrated Current 3,187.0 AHrs	UserBeam Decay Position X 7.1 µ Y 2.0 µ Size (FWHM)	im			
				Х 150.6 р -160 У 125.5 р	ım ım			
				Beamline Status PSS Master Shutter Enable	ID Gap			
				Infra Red Micro Crystallography	7.7 mm			
				-80 Macromolecular Crystallograph	iy 6.1 mm			
				Medical Imaging	0.1 1111			
				X-Ray Absorption Spectroscop	y 🗧 18.2 mm			
.2 13 14 15 16 17	18 19 20 21 22 23	24 1 2 3 4 5	6 7 8 9 10 11	Small/Wide Angle X-ray Scattering	8.4 mm			
Control Room Messag	les			Soft X-ray Spectroscopy	34.5 mm			
				Next Injection 20:00	202 mA			
	Store	l beam availab	le		8 Oct 10 11:55:56			

