

;lr iit

Cornell University Laboratory for Elementary-Particle Physics

Low-Emittance Tuning at CesrTA October 20, 2010

Jim Shanks CLASSE, Cornell University

On Behalf of D. Rubin, D. Sagan, et al.

Overview

- Survey/alignment
- BPM Electrode Gain Map / BPM Tilt Calibration
- X-ray Beam Size Monitor
- LET Procedure, Results
- Sextupole Optimizations / Tune Scans
- Beamsize vs. Closed Coupling, η_{y} , β_{y} Bumps
- Conclusions

Survey and Alignment

Parameter**Φ**Quad tilt120 μradQuad vert. offset41 μmBend roll73 μrad

Zero-Corrector Orbit

Measure vertical orbit with all vertical correctors off:

 Before and after major magnet alignment effort in August down period

BPM Electrode Gain Mapping

- Acquire turn-by-turn (TBT) data for 1024 turns
- Fit gains using a relation accurate to second-order*
- Fast data acquisition and analysis

*D. Rubin et al., PRST-AB 13, 092802 (2010)

Effects on Coupling Matrix

Coupling matrix before and after BPM electrode gain calibrations

J. Shanks - LET @ CesrTA

BPM Tilt Calibration

- Calibrate gains, correct Cbar12 coupling
 - Cbar12 = "out-of-phase" coupling; independent of BPM tilt
- Now coupling matrix elements Cbar22,Cbar11 are proportional to BPM tilt (plus error terms)

Cornell University Laboratory for Elementary-Particle Physics

Effects of Calibrations on η_y

X-Ray Beam Size Monitor

- xBSM detectors are operational for both positrons and electrons
- Both capable of bunch-by-bunch, turn-by-turn readout
- **Resolution:** ~ 16 microns with pinhole optic
 - < 10 microns with FZP
 - < 10 microns with Coded Aperture

- Vertical steering trim coils already exist on all sextupoles
 - Only trims on sextupoles near vertical-focusing quadrupoles are normally powered as steerings
- Reversing polarity on one coil creates a skew-quad-like field
- Power 12 sextupole trims (6 through each arc wiggler triplet) as skew ۲ quadrupoles to fine-tune coupling through wigglers
- Increased total number of skew quadrupoles in CESR from 15 to 27

Standard Low-Emittance Tuning Procedure:

- Measure / correct orbit to reference for xBSM horizontal orbit bump
 - Horizontal orbit bump required to mimic CHESS pretzel orbit and get light down xBSM beamline
- Measure betatron phase and coupling using resonant excitation; correct
- Next, measure:
 - Orbit (remeasure)
 - Betatron phase and coupling (remeasure)
 - Dispersion (using resonant excitation)
- Correct all three simultaneously using:
 - all 57 vertical steering correctors
 - all 27 skew quadrupoles

- Typical correction levels:
 - Cbar12 reduced to < 0.5% (RMS)
 - Contribution to Ey is negligible

- Vertical dispersion reduced to ~1.5cm (RMS)

- For standard optics (β_y = 16.8m at source) and using 16µm pinhole optic, typical beamsize is ~18µm
 - corresponds to ϵ_{y} ~ 20 pm
 - CesrTA Phase I emittance target met
 - Very close to resolution limit of pinhole optic
- η_y is typically ~several mm at xBSM source point
 - Typically adds ~10 μ m in quadrature to σ_y :

$$\sigma_{y} = \sqrt{\beta_{y} \epsilon_{y}} + \left(\eta_{y} \frac{\sigma_{E}}{E}\right)^{2}$$

10/20

-Fully-automated analysis for FZP, coded aperture is under development

-Measurement of beam size vs β at xBSM source agrees with independentlymeasured resolution for pinhole optic ~ 16µm

0.66

0.64

0.62

0.60

0.58

0.56

0.54

0.52

0.50 0.50 Cornell University Laboratory for Elementary-Particle Physics

Sextupole Optimizations

Optimize sextupole distribution to reduce resonance-driving terms, etc.

Vertical Amplitude vs. (Q_x, Q_y)

10/20/10

0.52

0.54

0.56

0.58

Qx

2-family

0.60

0.62

0.64

J. Shanks - LET @ CesrTA

0.66

Cornell University Laboratory for Elementary-Particle Physics

Tune Scan Measurement

Simulation

- Automated measurement of beam size using xBSM
- Stitch together 8 individual tune scan measurements

- Tune scans cover region (0.550,0.550) to (0.605,650)
- Regions with smallest measured beamsize circled in RED

18

20

2.2

LET - Final Result

- Combining everything we've learned...
 - Improved magnet alignment
 - Time in BPM system
 - New sextupole distribution
 - New working point based on tune scan results
 - Increased β_y at xBSM source (16.8m --> 30m)
 - Full LET optimization procedure
 - Vary the closed- η_y bump at xBSM source
- ...we observed xBSM measurements consistent with ε_y < 15pm
 - VERY PRELIMINARY → no chance to check repeatability
 - Need to verify in next CesrTA run!

- In "sub-15pm" corrected optics, vary a closed coupling bump through one triplet of wigglers
 - To first order, bump does not affect optics at xBSM source point
- Measure beam size response
 - serves as cross-check for beam size measurements

- Uncertainty in εy measurement: **+2.5/-4.5 pm**
- Considered contributions to uncertainty from:
 - βy at source
 - ηy at source (unidirectional for uncertainty in ϵy)
 - Uncertainty in longitudinal location of source point
 - Including Twiss parameter propagation with s
 - Scatter in individual beam size measurements

Conclusions

- Need to confirm these results in the next CesrTA run (December)
 - Reproduce result
 - Further characterize contributions to emittance reduction:
 - Optimized sextupole distribution
 - New working point
 - Large βy at source
 - Lifetime
 - IBS...
- Several new techniques under development:
 - Normal-mode corrections A. Wolski
 - "2Qx" phase measurement D. Sagan, Y. Yanay
- To be done:
 - High-chromaticity sextupole distribution for multibunch operation
 - Further increase β y at xBSM source (40m or higher)

Acknowledgments

Thanks to: M. Billing, M. Cunningham, J. Flanagan, R. Holtzapple, M. Palmer, D. Peterson, M. Rendina, N. Rider, D. Rubin, D. Sagan, C. Strohman, S. Wang, A. Wolski, Y. Yanay, ...