Determination of Heavy Smuon and Selectron Mass at CLIC Outline

- Physics motivation
- Mass measurement methods (Energy scan, End Point)
- Energy spread, ISR and Beamstrahlung
- Event selection, efficiency and S/B
- $\gamma\gamma \rightarrow h$ pile up and beam polarization
- Mass fit results
- Summary and Outlook

Work done at generator level, validated with full simulation and reconstruction using ILD software, Mokka and Marlin. M.Battaglia, J-J.Blaising

Physics motivation

Scalar leptons are the supersymmetric partners of the right and left handed charged leptons. Their masses are $\sim f(m0, m1/2, tan\beta)$ mo : the common squark, slepton and Higgs mass at Gut scale.

m1/2: the common gaugino mass at GUT scale.

 $\tan\beta$: the ratio of Higss vacuum expectation values at Mz.

The main decay is: $\widetilde{\ell}_{_{\scriptscriptstyle R}}^{_{\scriptscriptstyle \pm}} \rightarrow \widetilde{\chi}_{_{\scriptscriptstyle 1}}^{^{\scriptscriptstyle o}} + \ell^{_{\scriptscriptstyle \pm}}$

Measuring $\widetilde{\ell}_{R}^{*}$ and $\widetilde{\chi}_{I}^{\circ}$ masses allows to constrain SUSY parameters. The o is also a good dark matter candidate.

In the talk I focus on the smuon analysis wich is challenging due to its very low cross section. For the CLIC CDR studies, the final state with e-, e+ will be included; the cross section is larger; but at 3TeV the bremsstrahlung spoils the e-/e+ momentum measurement.

Signal and Background Cross Sections

Processes: $e^+ + e^- \rightarrow + - - \rightarrow \circ \mu^+ + \circ \mu^$ $e^+ + e^- \rightarrow - - \rightarrow \circ e^+ + - \circ e^-$

Generated with Isasugra, cMSSM parameters m½=1300, m₀=1001, tanβ=46, Sign(μ)<0 -> m = 1108.8 GeV m χ^{0} = 554.3 GeV, hadronization done with Pythia.

Process	Cross section x B.R(fb)
S: e⁺e⁻ → ⁺ ⁻	0.7
S: e⁺e⁻ → ⁻	4.2
B: e ⁺ e ⁻ → Inclusive SUSY	0.1
B: e⁺e⁻ → WW->lvlv	10.5
B: e⁺e⁻ → ZZ ->ll vv	0.8
B: $e^+e^- \rightarrow \mu v_e \mu v_e$	135

mass measurement Energy Scan

$\sigma=\sigma(m, vS)$

Measuring the cross section at different C.M energies allows to derive the mass. δm determined at generator level, assuming:
Selection efficiency =90%
S/B=0.5

√S (TeV)	∫Lumi (ab ⁻¹)	σ (fb)
2.5	0.7	0.33±0.033
2.7	0.3	0.58±0.060
3.0	2	0.82±0.026

m =(1109.13 ± 6.40839) GeV (ISR) m =(1108.38 ± 7.03864) GeV (ISR+BS)

and χ^o mass measurements Momentum Spectrum End-point

IWLC10

The $-> \mu + {}^{o}$ is a two body decay; The minimum and maximum muon momentun is given by (1). =>

- m is $f(\forall s, EL, EH)$ (2)
- m ^o is f(m $,\sqrt{s}$, EL,EH) (3)

EL and EH are the lower and uper edges

of the muon momentum spectrum.

The and χ^{0} masses are determined from a 2 parameters fit to the muon momentum spectrum.

The spectrum is modeled according

- to eq (1). A smearing is applied to fold in
- iSR, Beamstrahlung and momentum

resolution effects. J-J.Blaising(LAPP/IN2P3), October 2010

1000

1500

2000

ΡuGeV

500

ISR and Beamstrahlung effects

In both methods m \sim f(VS)

Left: Contribution to the C.M energy spread: ISR. Middle: ISR + Beam spread This distribution is used to fold in the energy spread in the fit.

Right: Muon momentum distribution; No ISR/FSR no BS; with ISR/FSR, no BS; ISR/FSR+B.S; the higher end of the distribution is most affected. J-J.Blaising(LAPP/IN2P3), October 2010

S, B Discriminating variables

 $dN/dP\mu$ (for fit) dN/dEvis, dN/dEtmiss, $dn/d(\Sigma Pt)$ and $dN/dM(\mu\mu)$ distribution for Signal and backgrounds after a preselection requiring two muons having $|\cos \theta| < 0.985$

> J-J.Blaising(LAPP/IN2P3), October 2010

Discriminating variables

- Visible energy Evis
- Missing transverse energy Etmiss
- Acollinearity and acoplanarity
- \bullet Sum of transverse momentum of muons Σ_{pt}
- Polar angle of the missing energy vector θ_{miss}
- \bullet Invariant mass of the two muons $M_{\mu\mu}$
- \bullet unbalance of the muons momenta Δ
- Missing mass Mmiss With:

$$\Delta = \left(1 - \frac{\mathbf{P}_{\mu_1} - \mathbf{P}_{\mu_2}}{\mathbf{P}_{\mu_1} + \mathbf{P}_{\mu_2}}\right)^{1/2}$$

$$M_{miss} = \P + M_{vis}^{2} - 2E_{vis}\sqrt{S}$$

$$M_{vis}^{2} = E_{vis}^{2} - P_{cis}^{2}$$

J-J.Blaising(LAPP/IN2P3), October 2010

IWLC10

Combined Probability

After a preselection requiring two muons having $|\cos \theta| < 0.985$, the normalized S/B values is computed for each variable and combined into a total probability used for the final selection.

dN/dProb for signal (blue), and background (red); δ Pt/Pt²=2.10⁻⁵

J-J.Blaising(LAPP/IN2P3), October 2010

Selection Efficiency and S/B

Selection efficiency (blue) S/B ratio (red) for δ Pt/Pt²=2.10⁻⁵ and muon identification efficiency = 100%.

For Prob > 0.8, the selection efficiency is 93 % and S/B ~ 40%;

Selection efficiency

Left: Muon momentum distribution, $\delta Pt/Pt^2=2.10^{-5}$, no selection and for Prob>0.8 Middle:efficiency for Prob>0.8, $\delta Pt/Pt^2=2.10^{-5}$. E ~ 93 % and S/B ~ 40%; Right : efficiency for Prob>0.8 $\delta Pt/Pt^2=2.10^{-4}$. E ~ 91 % S/B decreases to 33% The degradation of the energy resolution distorts the shape of dN/dP

IWLC10

Efficiency and S/B, Beam Polarization

selection efficiency and S/B for $\delta Pt/Pt^2=2.10^{-5}$ and different polarization conditions Left: pol (e⁻/e⁺) (0/0); S/B~0.4 Middle: (80/0); S/B~0.95 Right: (80/60); S/B~1.1 J-J.Blaising(LAPP/IN2P3), October 2010 12

Signal (only) fit, no beam polarization no background

Left: muon momentum resolution; G4 simulation + reconstruction: $\delta pt/pt^2 \sim 2.10^{-5}$ Right: Momentum spectum fit, with ISR+B.S and $\delta pt^2/pt^2 \sim 2.10^{-5}$ modeling.

m =1107.1±2.8 GeV and m °=560.1±1.5 GeV ; validation of fit and modeling J-J.Blaising(LAPP/IN2P3), October 2010

Stacked Signal + Background

Left: Signal + backgrounds without polarization. Right: with (e⁻80, e⁺0) polarization; Signal x 1.8 and background x0.2; upper edge better preserved from WW bkg. Background modeled for background subtraction J-J.Blaising(LAPP/IN2P3), October 2010 14

S-B Fits after B subtraction

Momentum spectum fits, with ISR+B.S and $\delta pt/pt^2$ modeling and B subtraction. Smuon : $\delta m/m \sim 2.0$ % without polarization and 1.5 % with 80% e⁻ polarisation Neutralino: $\delta m/m \sim 2.4$ % without polarization and 1.2 % with 80% e⁻ polarisation J-J.Blaising(LAPP/IN2P3), October 2010 15

$e^+ + e^- \rightarrow \gamma \gamma \rightarrow hadrons$

At 3 TeV ~ 3.3 e⁺ + e⁻ $\rightarrow \gamma \gamma \rightarrow hadrons events / BX \rightarrow ~ 13 particles/BX, 24 GeV/BX Per train (312 BX) ~ 7.5 Tev are dumped in the detector. Low E/Pt hadrons, but requires time stamping to preserve the energy resolution and the missing energy measurements necessary to discriminate Signal and background$

J-J.Blaising(LAPP/IN2P3), October 2010

Table of Results

Data Set	√S> (GeV)	δpt/pt² (x10 ⁻⁵ GeV ⁻¹)	Polarization (e ⁻ / e ⁺)	BX Capability	M (GeV)	M ^o (GeV)
S	2950	0	0/0	1	1106.3±2.9	558.8±1.3
S	2500	0	0/0	1	1098.8±2.6	555.4±1.2
S	2500	2	0/0	1	1104.6±2.9	560.0±1.7
S	2500	6	0/0	1	1098.8±3.1	559.1±3.6
S	2500	20	0/0	1	1107.5±4.2	575.7±5.3
S(G4+R)	2500	2	0/0	1	1107.2±2.8	560.1±2.2
S+B	2500	2	0/0	1	1107.4±20.2	533.8±13.1
S+B	2500	2	80/60	1	1101.7±13.5	536.7±5.5
S+B	2500	2	80/60	5	1102.4±12.9	548.9±7.1
S+B	2500	2	80/60	20	1104.6±12.8	551.1±7.1

When $\delta pt/pt^2$ increases, S/B decreases, δm increases; for $\delta pt/pt^2 > 10^{-4}$, efficiency corrections are large ,introducing significant systematic errors.

B modeling/subtraction increases δm ; it can be improved using polarization.

 $\gamma\gamma$ -> hadron decrease S/B; up to 20 BX time stamping (10 nsec); there is no significant δ_{M} degradation.

October 2010

Summary and Outlook

^o masses can be obtained from energy scan and fit to the dN/dP. ^o masses are:

- The background estimation and subtraction.
- The luminosity spectrum modeling.
- The μ momentum resolution.

To reach a statistical accuracy $\delta m/m^2 1\%$, with dN/dP fit method, requires:

- 2 ab⁻¹ of integrated luminosity
- Electron beam polarization ~ 80% to increase the S/B ratio.
- Good control of the luminosity spectrum, ISR and beamstrahlung.
- Good muon ID and $\delta pt/pt^2 < 5.10^{-5}$ to minimize momentum spectrum efficiency correction
- Time stamping capability <=20 BX to preserve S/B from γγ→h pile up. the measurement method and the requirements are similar. The detector performances studies for will be done with full simulation and reconstruction for the CLIC CDR.

۲