Measuring a light neutralino mass at the ILC

John Conley

Physikalisches Institut Universität Bonn

IWLC 2010, Geneva, October 20, 2010

with H. Dreiner, P. Wienemann, and K. Williams

Э

Sac

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Outline

John Conley Measuring a light neutralino mass at the ILC

イロト 不同 トイヨト イヨト 三日

DQC

The PDG bound

$$M_{\chi_1^0} > 46 \,\mathrm{GeV}$$
.

Origin of this bound

- Chargino searches set lower bound on M_2 and μ .
- SUSY GUT relation $M_1 = \frac{5}{3} \tan^2 \theta_w M_2$ is assumed.
- LEP Higgs search limits $\tan \beta \gtrsim 2$.
- Scan over allowed parameter space yields above bound.

Abandoning SUSY GUT assumption dramatically relaxes bound!

・ロト ・ 同ト ・ ヨト ・ ヨト

The PDG bound

$$M_{\chi_1^0} > 46 \,\mathrm{GeV}$$
.

Origin of this bound

- Chargino searches set lower bound on M_2 and μ .
- SUSY GUT relation $M_1 = \frac{5}{3} \tan^2 \theta_w M_2$ is assumed.
- LEP Higgs search limits $\tan \beta \gtrsim 2$.
- Scan over allowed parameter space yields above bound.

Abandoning SUSY GUT assumption dramatically relaxes bound!

(日) (同) (日) (日) (日)

Direct bounds on light neutralinos

How light can the neutralino be? [Dreiner et. al. '09]

- If M₁ and M₂ allowed to vary independently, neutralino mass matrix can have small or even zero eigenvalues.
- Even a massless neutralino can pass all direct laboratory and astrophysical bounds.

Direct bounds on a very light neutralino

- Supernova cooling
- Rare meson decays
- Monojets
- Many precision EW observables
- Dark matter (Cowsik-McClelland/Lee-Weinberg)

Can a light neutralino be realized in the MSSM?

Maybe not: in MSSM, $m_{\chi^0} > 28$ GeV. [Vasquez et. al. '10]

MCMC exploration of parameter space finds no models with light neutralinos that pass $B_S \rightarrow \mu\mu$ + (Tevatron *or* direct detection)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Sac

Can a light neutralino be realized in the MSSM?

Light neutralinos in non-minimal models still viable

e.g. NMSSM a possibility, and scattering cross sections possibly high enough to explain DM detection hints.

John Conley Measuring a light neutralino mass at the ILC

イロト イポト イヨト イヨト

Э

Sac

Hints from the sky for light dark matter?

The DAMA/LIBRA, CoGeNT, and CDMS experiments have each provided hints for a light dark matter particle.

Problems with this interpretation

- Null result of XENON 100
- Cross section needed for DAMA/LIBRA incompatible with results from CDMS and CoGeNT?
- However: clever model-building and uncertainties may render the experiments compatible
- Crucial to check evidence from the sky with a collider measurement of the DM mass.
- Light neutralino mass at ILC ⇒ non-minimal SUSY or non-standard cosmology?

Outline

John Conley Measuring a light neutralino mass at the ILC

イロト イロト イヨト イヨト 二日

590

Methods

Methods for measuring $m_{\chi^0_1}$

•
$$e^+e^-
ightarrow ilde{\ell}^- ilde{\ell}^+
ightarrow \ell^-\ell^+ + 2\chi_1^0$$

Slepton pair production \rightarrow lepton energy distribution [Martyn '04, Freitas et. al. '04, Moortgat-Pick '08]

•
$$e^+e^- \rightarrow \chi_2^0\chi_2^0 \rightarrow (\chi_1^0\ell_1^+\ell_1^-) (\chi_1^0\ell_2^+\ell_2^-) \chi_2^0$$
 pair production \rightarrow dilepton inv. mass and energy [TESLA TDR '01, ILC RDR '07]

 Threshold scans can fix masses of other SUSY particles involved.

We will concentrate on slepton pair production.

・ロト ・ 同ト ・ ヨト ・ ヨト

DQC

Kinematics of slepton pair production

• θ_0 : angle between $\vec{p}(e)$ in slepton rest-frame and $\vec{p}(\tilde{e})$

•
$$E_e = \frac{\sqrt{s}}{4} \left(1 - \frac{m_{\chi_1^0}^2}{m_{\tilde{e}}^2} \right) (1 + \beta_{\tilde{e}} \cos \theta_0)$$
, where $\beta_{\tilde{e}} = \sqrt{1 - \frac{4m_{\tilde{e}}^2}{s}}$

- Electron energy has flat distribution between endpoints E_{\pm} for $\cos \theta_0 = \pm 1$
- Solve for the SUSY masses:

$$m_{\tilde{e}} = \sqrt{s} rac{\sqrt{E_+E_-}}{E_+ + E_-}, \qquad m_{\chi_1^0} = m_{\tilde{e}} \sqrt{1 - rac{E_+ + E_-}{\sqrt{s}/2}}$$

• Measure E_+ and E_- : thus determine $m_{\chi^0_+}$

(日) (同) (日) (日) (日)

Measurement for SPS1a

- In SPS1a, $m_{\tilde{e}_R} = 143$ and $m_{\chi_1^0} = 96$ GeV.
- [Martyn '04] event generation, fast detector simulation, and background subtraction.

•
$$\sqrt{s} = 500 \text{ GeV}, \quad \mathcal{L} = 200 \text{ fb}^{-1}, \quad \mathcal{P}_{e^{-}} = 0.8, \ \mathcal{P}_{e^{+}} = -0.6$$

• \implies endpoint energy measurements:

$$E_- = 16.528 \pm 0.020, \qquad E_+ = 93.34 \pm 0.11 \; {
m GeV} \, .$$

• \implies mass measurements:

$$m_{{\widetilde e}_R} = 142.99 \pm 0.08, \qquad m_{\chi^0_1} = 96.05 \pm 0.1 \; {
m GeV} \, .$$

(日) (同) (日) (日) (日)

DQC

The trouble with light neutralinos

For very light neutralinos, we can write:

$$\delta M_{\chi_1^0} \simeq \frac{M_{\tilde{\ell}}^2}{M_{\chi_1^0}\sqrt{s}} \sqrt{\delta E_+^2 + \delta E_-^2}$$

- For $M_{\tilde{\ell}} = 200 \text{ GeV}$, $M_{\chi_1^0} = 1 \text{ GeV}$, and $\sqrt{s} = 500 \text{ GeV}$, coefficient is 80!
- This means that if δE 's are the same as for SPS1a, $\delta M_{\chi_1^0} \simeq$ 9 GeV
- We should be helped somewhat by higher \tilde{e} pair production, due to *t*-channel exchange of light neutralino.

・ロト ・ 同ト ・ ヨト ・ ヨト

Our simulation

Simple kinematics allows simple simulation

- Throw random lepton energies from flat distribution
- Include beamstrahlung: $\sqrt{s'} < \sqrt{s}$
- Smear according to minimum of ECAL and tracker resolution:

$$\Delta\left(\frac{1}{p_{T}}\right) = 1 \cdot 10^{-4} \text{ GeV}^{-1} \quad (\text{tracker})$$

$$\frac{\Delta E}{E} = \frac{0.166}{\sqrt{E/\text{GeV}}} \oplus 0.011 \quad \text{(ECAL)}$$

Calculate polarized [(\$\mathcal{P}_{e^-}\$, \$\mathcal{P}_{e^+}\$) = (+80\%, -60\%)] cross sections with SPheno [Porod '03]

Scenarios

First we compare with Martyn for SPS1a, and find ${\sim}30\%$ agreement

Light neutralino scenarios

- $\sqrt{s} = 500 \text{ GeV}$ and $\mathcal{L} = 250 \text{ fb}^{-1}$; beam pol. (+80%, -60%)
- Fix slepton mass at 200 and 100 GeV and scan neutralino mass (MSSM)
- *e*_R production dominates the fit

Future work?

Is WW background still negligible for light neutralinos?

• Redo for other scenarios, e.g. NMSSM

Dac

Scenarios

First we compare with Martyn for SPS1a, and find ${\sim}30\%$ agreement

Light neutralino scenarios

- $\sqrt{s} = 500 \text{ GeV}$ and $\mathcal{L} = 250 \text{ fb}^{-1}$; beam pol. (+80%, -60%)
- Fix slepton mass at 200 and 100 GeV and scan neutralino mass (MSSM)
- *e*_R production dominates the fit

Future work?

- Is WW background still negligible for light neutralinos?
- Redo for other scenarios, e.g. NMSSM

Fitting the endpoints

• We fit measured endpoint shapes to parametrizations:

$$f_{-}(E) = \begin{cases} \frac{1}{2} \left[\operatorname{erf} \left(\frac{E - \hat{E}_{-}}{\sqrt{2}\sigma_{1}^{-}} \right) + 1 \right] & : \quad E < \hat{E}_{-} \\ \frac{1}{2} \left[\operatorname{erf} \left(\frac{E - \hat{E}_{-}}{\sqrt{2}\sigma_{2}^{-}} \right) + 1 \right] & : \quad E \ge \hat{E}_{-} \end{cases}$$

for E_{-} and

$$f_{+}(E) = \begin{cases} \frac{1}{2} \operatorname{erfc} \left(\frac{E - \hat{E}_{+}}{\sqrt{2}\sigma_{1}^{+}} \right) & : \quad E < \hat{E}_{+} \\ \frac{1}{2} \operatorname{erfc} \left(\frac{E - \hat{E}_{+}}{\sqrt{2}\sigma_{2}^{+}} \right) & : \quad E \ge \hat{E}_{+} \end{cases}$$

• $\sigma_1 \neq \sigma_2$ because beamstrahlung is asymmetric.

(日) (同) (日) (日) (日)

DQC

Toy datasets and distributions

- For a given neutralino mass, we simulate many toy datasets
- For each toy dataset, we fit the endpoints and compute the neutralino mass
- We take the spread of M²_{\u03c41} values as a measure of uncertainty

프 🕨 🗆 프

Negative mass-squared and Feldman-Cousins

[Feldman and Cousins '97]

・ロト ・ 国 ト ・ 国 ト ・ 国 ト

= 990

- For small $M_{\chi_1^0}$, M^2 distribution extends below zero
- Feldman-Cousins method gives confidence intervals with correct coverage in this case
- Smooth transition from mass measurement to upper bound

Results

- Upper bound only is possible if $M_{\chi_1^0} \lesssim 2(4)~{
 m GeV}$ for a 100(200) GeV \tilde{e}_R
- For $M_{\chi_1^0} = 1$ GeV, upper bound is 2.5(7.6) GeV for a 100(200) GeV \tilde{e}_R

э

500

Outline

John Conley Measuring a light neutralino mass at the ILC

イロト イロト イヨト イヨト 二日

590

Conclusions

- Light neutralinos are of phenomenological interest.
- Depending on the slepton masses, the neutralino mass can be measured accurately at the ILC down to M_{\chi_1} = few – several GeV.
- For even lighter neutralinos, only an upper bound on the mass can be set.
- Measuring such a light neutralino mass could have striking theoretical consequences!

<ロト < 同ト < 巨ト < 巨ト < 巨 > つへの