A Study of Light-flavored SQuark Production at CLIC

Frank Simon MPI for Physics & Excellence Cluster 'Universe' Munich, Germany

Peter Schade DESY, Hamburg, Germany & CERN, Geneva, Switzerland

International Workshop on Linear Colliders, Geneva October 2010

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Excellence Cluster

Outline

- Squark production and decay at CLIC
- Techniques for mass measurements
- First generator level study
- Summary/Outlook

SQuarks: The Domain of Multi-TeV Colliders

- In many mSUGRA models the squarks are among the heaviest sparticles
 - Requires collision energies beyond I TeV for pair production
 - The light-flavored quarks are special: Left and right squarks don't mix to form two mass states

- typically no distinction between first and second generation:
 - up, charm squarks and down, strange squarks have equal masses
 - small mass difference between uptype and down-type
 - mass difference between left- and right squarks

Precise squark mass measurements are an important ingredient for SUSY spectroscopy!

Squark Production and Decay

- Pair production via Z/γ exchange
 - Right squarks do not carry weak isospin: here only em coupling
 - cross section ratio for up/down type:
 4:1

4

ЪШ

Squark Production and Decay

- Pair production via Z/γ exchange
 - Right squarks do not carry weak isospin: here only em coupling
 - cross section ratio for up/down type:
 4:1
- The decay depends strongly on the detailed spectrum of the underlying model:
 - If the M(gluino) < M(squark), the QCD decay dominates

 $\tilde{q} \to \tilde{g}q$

Squark Production and Decay

- Pair production via Z/γ exchange
 - Right squarks do not carry weak isospin: here only em coupling
 - cross section ratio for up/down type: **4:**
- The decay depends strongly on the detailed spectrum of the underlying model:
 - If the M(gluino) < M(squark), the QCD decay dominates

 $\tilde{q} \rightarrow \tilde{q}q$

• If the M(gluino) > M(squark), the decay occurs via weak interaction:

$$\tilde{q} \to \chi_n^0 q \qquad \qquad \tilde{q} \to \chi_n^{\pm} q'$$

For right-squarks:

- only decay to neutralinos occur, since they do not couple to winos
- decay $\tilde{q} \to \chi_1^0 q$ dominates if lightest neutralino is mostly bino

Light-flavored Right Squarks at CLIC

- Light-flavored right-squarks are an excellent benchmark process: $e^+e^- \rightarrow \tilde{q}\tilde{q} \rightarrow qq\chi_1^0\chi_1^0$
 - characterized by two high-energy jets and missing energy.
- The goal: Measure the squark mass and the production cross section
- Here: study different mass measurement techniques, first investigations of possible backgrounds
 - Two SUSY scenarios, both with almost degenerate light right-squark masses (u,d,s,c):
 - The CLIC benchmark: $m(\tilde{u}_R, \tilde{c}_R) = 1126 \,\text{GeV}$ $m(\tilde{d}_R, \tilde{s}_R) = 1116 \,\text{GeV}$ $m(\chi_1^0) = 328 \,\text{GeV}$
 - SPSIb (typical mSUGRA): $m(\tilde{u}_R, \tilde{c}_R) = 846 \,\text{GeV}$ $m(\tilde{d}_R, \tilde{s}_R) = 843 \,\text{GeV}$ $m(\chi_1^0) = 162 \,\text{GeV}$

Mass Measurement Techniques: Jet Energy

- The "Classic": Use the distribution of the jet energy
 - Upper and lower edge of the distribution is given by s, m(squark), m(neutralino)
 - Allows the simultaneous measurement of neutralino and squark mass

SPS1b, generator level (quark energies) 10k events,WHIZARD 1.95 no ISR, no BS, no detector effects

Jet Energy: Impact of ISR and Beamstrahlung

- Beamstrahlung in particular has a strong impact on the luminosity spectrum at CLIC, and thus on the observables themselves:
 - observables using s explicitly get distorted
 - asymmetric collision energies and the corresponding boost of the cm frame lead to distortions when measured in the detector frame

Jet Energy: Impact of ISR and Beamstrahlung

- Beamstrahlung in particular has a strong impact on the luminosity spectrum at CLIC, and thus on the observables themselves:
 - observables using s explicitly get distorted
 - asymmetric collision energies and the corresponding boost of the cm frame lead

Mass Measurement Techniques: Minimum Squark Mass

- Calculate the minimum squark mass allowed in an event, using
 - the measured jet three momenta (assuming massless quarks)
 - the neutralino mass (assuming it is known from other measurements)
 - the collision energy s

J.L Feng, D.E. Finnell, PRD 49, 2369 (1994)

Mass Measurement Techniques: Minimum Squark Mass

- Calculate the minimum squark mass allowed in an event, using
 - the measured jet three momenta (assuming massless quarks)
 - the neutralino mass (assuming it is known from other measurements)

 \Rightarrow peaks at true squark mass: good for low statistics

 \Rightarrow reduced distortions from beamstrahlung

Light-flavored SQuark Production at CLIC IWLC2010, Geneva, October 2010

Mass Measurement Techniques: M_C

- Several new techniques studied for LHC: Need independence from collision energy, typically use only transverse observables
- Interesting technique: A modified invariant mass, calculated from the four momentum of one quark and the parity-transformed four momentum of the other quark
 D.R. Tovey, JHEP 04, 34 (2008)
 - invariant under contra-linear boosts: works for back-to-back pair production of particles
 - at LHC, use a transverse form, use full 3D for lepton colliders
 - requires quark momenta and neutralino mass as input

upper edge of distribution given by:

$$M_C^{max} = \frac{m_{\tilde{q}}^2 - m_{\chi}^2}{m_{\tilde{q}}}$$

Mass Measurement Techniques: M_C

- Collision energy does not enter: Reduced sensitivity to collider energy spectrum (beamstrahlung enters due to boost along beam axis)
- Maximum at upper edge: Advantageous in environments with low statistics
- Simple tri-angular shape (without cuts and distortions): Potentially easy to fit

First Look at the CLIC Benchmark Scenario

- Studies within the CLIC benchmark scenario
 - cross section at 3 TeV: $\sigma(\tilde{u}_R) = 1.14 \,\text{fb}$ $\sigma(\tilde{d}_R) = 0.29 \,\text{fb}$
 - ▶ total: σ(ũ_R, d̃_R, š_R, č_R) = 2.9 fb
 (without ISR and beamstrahlung, reduced for realistic collider energy distribution)
 - compare to SPS1b: total cross section $\sigma(\tilde{u}_R, \tilde{d}_R, \tilde{s}_R, \tilde{c}_R) = 5.0 \,\text{fb}$
- Generator-level studies including hadronization
 - WHIZARD 1.95, unpolarized beams
 - Simple jet finding, detector resolution parametrized using expected PFA performance
 - Acceptance: $|\cos\theta| < 0.99$, $p_T > 0.25$ GeVs

Signal, Background and Cuts

	Final State	σ (with ISR + BS)
Signal	qqχχ (u,d,s,c)	~ I.8 fb
SM Background	рр	~ 2300 fb
	qqvv	~ 950 fb
	qqee	~ 3300 fb
	qqev	~ 5300 fb
SUSY	qqννχχ	~ I.0 fb
	qqlνχχ	~ 8.5 fb
	qqllχχ	~ 0.6 fb

still under study: qqll, qqvl for I = μ , τ

- First cut-based study: Cuts optimized for a signal efficiency of 20% with TMVA
 - cuts on N_{reco}, accoplanarity of jets, cosθ, jet invariant mass, invariant mass of two reconstructed jets transverse momentum relative to event thrust axis missing p_T, maximum lepton momentum in event
- General selection cuts based on event characteristics (missing E, di-jet final state)
 - $E_{vis} < 2.3$ TeV, $E_{Jet} < 1.4$ TeV, no lepton with more than 400 GeV

Cuts: Signal and Background Distributions

For 2000 fb⁻¹ (~4 years of CLIC running):

- ~ 650 Signal events
- ~ 60 SUSY background events
- ~ 230 SM background events

(+ contributions from μ , τ final states)

Jet Energy: Signal & Background

 Illustration of the effects of cuts and background (both SUSY and SM) on distributions:

In the simple jet energy distribution, both the upper and lower edges are significantly distorted:

- lower edge strongly affected by cuts
- upper edge suffers from cuts, beamstrahlung and background extending beyond the endpoint

Jet Energy: Signal & Background

 Illustration of the effects of cuts and background (both SUSY and SM) on distributions:

SM four fermions is the dominant background

In the simple jet energy distribution, both the upper and lower edges are significantly distorted:

- lower edge strongly affected by cuts
- upper edge suffers from cuts, beamstrahlung and background extending beyond the endpoint

Minimum Squark Mass: Signal & Background

- Minimum squark mass:
 - cuts, beamstrahlung and detector resolution strongly affect distribution shape
 - upper edge remains, background underneath distribution endpoint completely removed: Good possibility for mass measurement (assuming $M(\chi)$ is known)

Fit of distribution with a 2nd order polynomial multiplied by an error function

Extraction of the squark mass from the fitted mean of the error function: Obtained mass consistent with

true values within errors

Minimum Squark Mass: Signal & Background

- Minimum squark mass:
 - cuts, beamstrahlung and detector resolution strongly affect distribution shape
 - upper edge remains, background underneath distribution endpoint completely removed: Good possibility for mass measurement (assuming $M(\chi)$ is known)

Fit of distribution with a 2nd order polynomial multiplied by an error function

- Extraction of the squark mass from the fitted mean of the error function:
- Obtained mass consistent with true values within errors

Light-flavored SQuark Production at CLIC IWLC2010, Geneva, October 2010

M_C: Signal & Background

- M_C distribution:
 - strongly affected by cuts, beamstrahlung and detector resolution
 - moderate influence of background on the upper edge of the distribution, smooth distortions by analysis effects

Fit of distribution with a Ist order polynomial multiplied by an error function

Extraction of maximum M_C from half maximum of the fitted rising edge: Offset from true value by about 10 GeV, consistent with error determined from toy MC

Light-flavored SQuark Production at CLIC IWLC2010, Geneva, October 2010

M_C: Signal & Background

- M_C distribution:
 - strongly affected by cuts, beamstrahlung and detector resolution
 - moderate influence of background on the upper edge of the distribution, smooth distortions by analysis effects

Summary / Outlook

- The study of light-flavored squarks is an integral part of SUSY spectroscopy
 - Right-squarks have potentially very simple two body decays
- Several techniques exist for the mass measurement of particles with semiinvisible two-body decays
 - Classic jet energy endpoints suffer significantly from beamstrahlung
 - More sophisticated observables using neutralino mass appear promising
- A first generator-level study including SM and SUSY backgrounds
 - Initial cut-based study shows high signal purity can be reached
 - Further optimization of analysis in progress
- Selected as one of the benchmarks for the CLIC CDR:
 - Full simulation of signal, SM and SM backgrounds coming up

