Status of the Diamond Light Source

R. Bartolini

Diamond Light Source Ltd and John Adams Institute, University of Oxford

ILCW CERN, Geneva, 20th October 2010

- Introduction to Diamond
- Beam optics studies (linear and nonlinear)
- Beam stability
- Low alpha optics and THz emission
- Customised optics

Diamond aerial view

Diamond is a third generation light source open for users since January 2007 100 MeV LINAC; 3 GeV Booster; 3 GeV storage ring 2.7 nm emittance – 300 mA – 18 beamlines in operation (10 in-vacuum small gap IDs)

Diamond storage ring main parameters non-zero dispersion lattice

48 Dipoles; 240 Quadrupoles; 168 Sextupoles
(+ H and V orbit correctors + 96 Skew Quadrupoles)
3 SC RF cavities; 168 BPMs

Quads + Sexts have independent power supplies

Energy	3 GeV
Circumference	561.6 m
No. cells	24
Symmetry	6
Straight sections	6 x 8m, 18 x 5m
nsertion devices	4 x 8m, 18 x 5m
Beam current	300 mA <mark>(500 mA)</mark>
Emittance (h, v)	2.7, 0.03 nm rad
_ifetime	> 10 h
Vin. ID gap	7 mm (5 mm)

Beam size (h, v)123, 6.4 μ mBeam divergence (h, v)24, 4.2 μ rad(at centre of 5 m ID)178, 12.6 μ mBeam size (h, v)178, 12.6 μ mBeam divergence (h, v)16, 2.2 μ rad(at centre of 8 m ID)

Brilliance and low emittance

The brilliance of the photon beam is determined (mostly) by the electron beam emittance that defines the source size and divergence

Linear optics modelling with LOCO Linear Optics from Closed Orbit response matrix – J. Safranek et al.

LOCO allowed remarkable progress with the correct implementation of the linear optics

Linear coupling correction with LOCO

Skew quadrupoles can be simultaneously zero the off diagonal blocks of the measured response matrix and the vertical disperison

$$\chi^{2}(\overline{Q}, \overline{G}_{BPMs}, \overline{S}_{q}, \overline{k}_{BPMs}, ...) = \sum_{i,j} \left(R_{ij}^{measured} - R_{ij}^{model}(\overline{Q}, \overline{S}_{q}, \overline{G}_{BPMs}, \overline{k}_{BPMs}, ...) \right)^{2}$$

Residual vertical dispersion after correction

Without skew quadrupoles off

After LOCO correction

r.m.s. Dy = 14 mm r.m.s. Dy = 700 μm

ILCW CERN, Geneva, 20th October 2010

Measured emittances

Coupling without skew quadrupoles off K = 0.9%

(at the pinhole location; numerical simulation gave an average emittance coupling 1.5% 1.0%)

Emittance [2.78 - 2.74] (2.75) nm Energy spread [1.1e-3 - 1.0-e3] (1.0e-3)

After coupling correction with LOCO (2*3 iterations) 1^{st} correction K = 0.15%

2nd correction K = 0.08%

V beam size at source point 6 µm

Emittance coupling $0.08\% \rightarrow V$ emittance 2.2 pm

Variation of less than 20% over different measurements

Lowest vertical emittance

	Model emittance	Measured emittance	β -beating (rms)	Coupling* (ε _y / ε _x)	Vertical emittance
ALS	6.7 nm	6.7 nm	0.5 %	0.1%	4-7 pm
APS	2.5 nm	2.5 nm	1 %	0.8%	20 pm
ASP	10 nm	10 nm	1 %	0.01%	1-2 pm
CLS	18 nm	17-19 nm	4.2%	0.2%	36 pm
Diamond	2.74 nm	2.7-2.8 nm	0.4 %	0.08%	2.2 pm
ESRF	4 nm	4 nm	1%	0.25%	5 pm
SLS	5.6 nm	5.4-7 nm	4.5% H; 1.3% V	0.05%	2.8 pm
SOLEIL	3.73 nm	3.70-3.75 nm	0.3 %	0.1%	4 pm
SPEAR3	9.8 nm	9.8 nm	< 1%	0.05%	5 pm
SPring8	3.4 nm	3.2-3.6 nm	1.9% H; 1.5% V	0.2%	6.4 pm
SSRF	3.9 nm	3.8-4.0 nm	<1%	0.13%	5 pm

Nonlinear dynamics comparison machine to model (I)

Detuning with momentum: operation at positive chromaticity (2/2)

Calibration tables for sextupole families were off by few %

The most complete description of the nonlinear model is mandatory ! Fringe fields in dipoles (2nd order –symplectic integration) and in quadrupoles Higher order multipoles in dipoles and quadrupoles (from measurements)

Nonlinear dynamics comparison machine to model (II)

Orbit stability: disturbances and requirements

for 3rd generation light sources this implies sub-µm stability

- identification of sources of orbit movement
- passive damping measures
- orbit feedback systems

Orbit stability requirements for Diamond

Beam stability should be better than 10% of the beam size

 $\Delta x < 0.1 \cdot \sigma_x \qquad \Delta x' < 0.1 \cdot \sigma_{x'} \\ \Delta y < 0.1 \cdot \sigma_y \qquad \Delta y' < 0.1 \cdot \sigma_{y'}$

For Diamond nominal optics (at short straight sections)

 $\Delta x < 0.1 \cdot 123 \,\mu m = 12.3 \,\mu m \qquad \Delta x' < 0.1 \cdot 24 \,\mu rad = 2.4 \,\mu rad$ $\Delta y < 0.1 \cdot 6.4 \,\mu m = 0.6 \,\mu m \qquad \Delta y' < 0.1 \cdot 4 \,\mu rad = 0.4 \,\mu rad$

IR beamlines might have tighter requirements

Seismometer mounted on top of a quadrupole

ILCW CERN, Geneva, 20th October 2010

Ground vibrations to beam vibrations: Diamond

Amplification factor girders to beam: H 31 (theory 35); V 12 (theory 8);

1-100 Hz		Horizontal		Vertical	
		Long Straight	Standard Straight	Long Straight	Standard Straight
Position (µm)	Target	17.8	12.3	1.26	0.64
	Measured	3.95 (2.2%)	2.53 (2.1%)	0.70 (5.5%)	0.37 (5.8%)
Angle (µrad)	Target	1.65	2.42	0.22	0.42
	measured	0.38 (2.3%)	0.53 (2.2%)	0.14 (6.3%)	0.26 (6.2%)

Global fast orbit feedback: Diamond

Passive improvement of orbit stability

Girder vibrations

Elimination of vibrations at 24.9 Hz after fixing water cooling pump mountings

Top-Up motivation

ILCW

Higher average brightness

- Higher average current
- Constant flux on sample

Improved stability

- Constant heat load
- Beam current dependence of BPMs

Flexible operation

- Lifetime less important
- Smaller ID gaps
- Lower coupling

BPMs block stability

- without Top-Up $\sim 10 \ \mu m$
- with Top-Up < 1 μ m

Crucial for long term sub- μm stability

Top-Up mode (I)

First operation with external users, 3 days, Oct. 28-30

Moved from the "Standard" operation: 250 mA maximum, 2 injections/day

No top-up failures, no beam trips due specifically to top-up

Top-Up mode

17th-19th September 2009: 112 h of uninterrupted beam:

Improvement of orbit stability in Top-Up mode

 $\sigma_{\rm x}'/10$

- in both cases, Fast Orbit Feedback (electron BPMs) ON

Bunch length in 3rd generation light sources

Time resolved science requires operating modes with single bunch or hybrid fills to exploit the short radiation pulses of a single isolated bunch

Modern light sources can operate a wide variety of fill patterns (few bunches, camshaft)

Ultra-short radiation pulses in a storage ring

There are three main approaches to generate short radiation pulses in storage rings

Short bunches at Diamond

The equilibrium bunch length at low current is

$$\sigma_{z} = \frac{\alpha c}{2\pi f_{s}} \sigma_{\varepsilon} \propto \sqrt{\frac{\alpha \gamma^{3}}{d V_{RF} / dz}}$$

We can modify the electron optics to reduce $\boldsymbol{\alpha}$

$$\alpha = \frac{1}{L} \oint \frac{D_x}{\rho} ds \approx 10^{-6}$$

 α (low_alpha_optics) $\approx \alpha$ (nominal) /100 $\rightarrow \sigma_z$ (low alpha optics) $\approx \sigma_z$ (nominal)/10

Comparison of measured pulse length for normal and low momentum compaction

2.5 ps is the resolution of the streak cameraShorter bunch length confirmed by synchrotron tune measurements

$$f_s = 340Hz => \alpha_1 = 3.4 \quad 10^{-6}, \sigma_L = 1.5 \text{ps}$$

 $f_s = 260Hz => \alpha_1 = 1.7 \times 10^{-6}, \sigma_L = 0.98 \text{ps}$

Low alpha lattices at Diamond

Measured values:

Emittance = 35.1 ± 1.5 nm.rad (34)

En. Spread = 0.13 ± 0.02 %

Coupling $= 0.04 \quad 0.01\%$

Low alpha lattices at Diamond

Measured values: Emittance = ~ 4 nm.rad (4.2) En. Spread = $\sim 0.1\%$ Coupling = $\sim 0.6\%$

Low-alpha Operation

Coherent THz detection @ Diamond

Diamond operates with short electron bunches for generation of Coherent THz radiation

This operating regime is severely limited by the onset of the microbunch instabilities.

Sub-THz radiation bursts appeared periodically while the beam was circulating in the ring

A ultra-fast Schottky Barrier Diode sensitive to the radiation with 3.33-5mm wavelength range was installed in a dipole beamport;

Coherent THz emission

Recent experiments in low-alpha have shown a strong coherent THz emission, The quadratic dependence of the THz emission with current was clearly detected

I13: "Double mini-beta" and Horizontally Focusing Optics

mid-straight girder with two new quadrupoles make-up vessel in place of future in-vacuum undulator modified main girder with additional quadrupole

Customised optics in straight 13

- As regards beam dynamics, the new optics works well and has been well corrected.
- At high current beam instabilities appear which can be overcome, but further work is required to ensure operation is as robust as the nominal optics.
- The aim is to run for users with the new optics before the end of Run #5

Beta-function errors with respect to the model:

ILCW CERN, Geneva, 20th October 2010

Conclusions

Diamond is a state-of-the-art third generation light source

An intense campaign of Accelerator Physics studies is ongoing to better understand and improve the machine performance

Careful alignment and independent power supplies in all quadrupoles have allowed a very good control of the linear optics

Several <u>very</u> different optics have all been succesfully operated with residual beta beating of 1% or less., with excellent coupling control.

Two major development programmes already completed: Top Up operation and Low Alpha

Thank you for your attention