International Workshop on Linear Colliders

Test Beam Studies for GaAs Sensor for the Beam Calorimeter at ILC

DESY, Germany

Novgorodova Olga On behalf of FCAL Collaboration

aboration Technische Universität

b-tu

> Introduction

- > Beam Calorimeter
- > Sector Prototype for BeamCal
- > Test Beam DESYII (Summer 2010)
- > Measurements
- > Analysis
- > Conclusions

Forward Region

Precise luminosity measurement,

Hermeticity (electron detection at low polar angles),

Assisting beam tuning (fast feedback of BeamCal data to machine)

Challenges: radiation hardness (BeamCal), high precision (LumiCal) and fast readout (both)

Beam Calorimeter

30 Layers	Tungsten - Sensor Iayers - GaAs or Di
Radii	2-15 cm
Depth	~12 cm
GaAs Prototype	
Radii	2-8.5 cm
Segmentation	5x5 mm ²
Thickness	500 μm
Metallization	ΑΙ
provided by RID Tomsk through JINR Dubna	
Leakage Current	~100nA, 50V

First Prototype for GaAs

Preparation work

> GaAs detectors

- IV-measurements (~100nA at 50V)
- CV-measurements (~10pF)
- > Fan out
 - Capacitance measurements
- > Readout chips
 - Inearity test
 - signal size
 - signal to noise
 - calibration

TestBeam DESY II

Test Beam Set Up

> 7mm scintillator fingers

- > Double perpendicular layers
- > 640 strip channels (50µm)

> ADC v1721 as for BCM1F

Test Beam Area 22

Test Beam Measurements

- > To prove front end electronics operation together with sensor and automated readout
- > Measure every pad (~200.000 events)
- Edges between pads irradiation
 Green and red regions
 - ~2.000.000 events
- > Cross talk measurements

Charge Collection Efficiency (CCE)

Telescope Analysis

- > TelAna provides information about hits (two algorithms of hit calculations + alignment between Si planes)
 - DIG digital → seed signal
 - COG center of gravity
- > Tracks are reconstructed:
 - 3 hits per telescope
 - 1 hit in every plane
 - 62% of tracks
- > 2 telescope planes are used for linear fit for prediction of the position in the sensor

Preliminary Tracking

CCE vs Position

Number of hits as a function of reconstructed x position in sensor box.

> CCE as a function of reconstructed x position in sensor box.

Charge Sharing - Preliminary

- > Pad's gaps 0.2 mm
- > 50 µm bin
- > Charge Sharing in 4 Edge case

Conclusions

- In the summer 2010 a first measurement combining a sensor with a front-end ASIC was made on the TestBeam DESYII (Hamburg).
- > Detectors were characterized wit IV(~100nA), CV (~10pF), CCE(~30%), S/N(~10)
- > Full chain of Sensor-Readout-Fanout-ADC-Telescope

> Under investigations:

- Analysis of edges
- Tracking and alignment
- CCE vs Voltage

>Thank You for Your Attention!

