Tests of GEANT4 using the CALICE Si-W ECAL

David Ward

Discuss measurements of electromagnetic and (mainly)
 hadronic showers + comparison with GEANT4 simulations

 Study of e/m showers reported previously – serves as a check of our understanding of the detectors.

•The ECAL is ~1 λ_{int} in depth \Rightarrow ~50% of hadrons start to shower in the ECAL. Need to understand the ECAL response.

Fine granularity of the ECAL permits some interesting measurements of hadronic shower properties in Tungsten.

CALICE

- CALICE ~300 people/53 groups/17 countries
- Various projects aimed towards aspects of highly segmented calorimetry for a future Linear Collider detector, motivated by Particle Flow.
- Given focus by common test beams, combining ECAL/HCAL/tail catcher (TCMT); common DAQ/analysis.
- First round small "physics prototypes"
 - Evaluate technologies; identify problem areas.
 - Validate Monte Carlo simulations, especially for hadronic showers, so that results can feed into full detector simulations.
 - ✤ Still sizeable systems with ~20K channels.
- Second phase "technological prototypes" (mainly under aegis of EUDET).
 - More realistic technological solutions; module dimensions etc.
 - e.g. minimise thickness of sensitive layers; power pulsing.
- Will discuss some results of physics prototypes today.

IWLC 2010 Geneva Oct.'10

CALICE test beams

- Main beam tests, using π, μ, e
 beams:
- 2006-7 SiW ECAL + AHCAL + TCMT
 CERN
- 2008 SiW ECAL + AHCAL + TCMT @ Fermilab
- 2008-9 Scint-W ECAL + AHCAL + TCMT @ Fermilab
- 2010 DHCAL + TCMT @ Fermilab
- 2010 W HCAL @ CERN

IWLC 2010 Geneva Oct.'10

David Ward

3

SiW ECAL

IWLC 2010 Geneva Oct.'10

Data used

- Based on the 2007 CERN test beam running.
- π⁻ beams @ 8, 10, 12, 15, 20 GeV
 - ♦ Čerenkov used to remove e⁻ background
- π⁺ beams @ 30, 50, 80 GeV
 - Čerenkov used to remove proton background
- Muons identified by low energy in all three calorimeters, and rejected.
- Simulations using GEANT4.9.3 (December 2009) with eight hadronic physics lists
 - QGSP_BERT
 - QGSP_BERT_TRV
 - QGSP_FTFP_BERT
 - QGSP_BIC
 - ✤ QGS_BIC
 - FTF_BIC
 - FTFP_BERT
 - ♦ LHEP
- Comparisons made at detector level. Energies in units of MIPs (minimum ionising particle (i.e. muon) equivalents).

Some electron results

Probability of not interacting in ECAL

As identified through MIP-like energy deposition in ECAL

Serves as a test of the GEANT4 cross-sections on Tungsten Most physics lists within 1-2% of data Most conspicuous outlier is LHEP

IWLC 2010 Geneva Oct.'10

Energy in ECAL (QGSP_BERT physics list)

Energy deposited in ECAL

Show trend of <E(MC)>/<E(Data)> vs beam energy

Steps seen as Geant4 makes transitions between models
Most models lie within 10% of data
Closest overall seems to be FTF BIC

•LHEP is a striking outlier, diverging significantly at high energies

IWLC 2010 Geneva Oct.'10

Transverse shower profile

IWLC 2010 Geneva Oct.'10

Tails of transverse profiles

Most models underestimate shower width at high energies. FTF lists fit data best

IWLC 2010 Geneva Oct.'10

David Ward

11

Longitudinal shower profile

- The observed longitudinal shower development reflects a convolution of the distribution of shower starting points with the true shower shape.
- High granularity allows us to identify the shower start to within ±1 layer typically.
- Can then measure shower longitudinal development w.r.t. this point.
- Restrict to showers starting in first 10 layers of ECAL, so that almost 1 λ_{int} in the ECAL is available to develop the shower. And ~20X₀ so that photons in initial interaction can shower fully.

12

IWLC 2010 Geneva Oct.'10

Shower profiles w.r.t. interaction point

12 GeV data compared to all 8 physics lists

In simulation, can record hit energies associated with each particle species. Note that "mesons" (π , μ , K), e[±] and protons have distinctive shower profiles. None completely fits the data.

IWLC 2010 Geneva Oct.'10

Shower profiles w.r.t. interaction point

Compare two physics lists at 4 energies

Three main components can be observed:

- •Short range component (mainly protons; nuclear spallation products)
- •Electromagnetic component
- •Longer range components; mesons + MIP-like protons

IWLC 2010 Geneva Oct.'10

David Ward

Focus on different regions of the shower:

IWLC 2010 Geneva Oct.'10

David Ward

15

... continued ...

Layers 30-50 Mainly hadron dominated Most models within ~10% of data QGSP models slightly favoured

IWLC 2010 Geneva Oct.'10

Summary

- Use of the CALICE ECAL to study the early stages of hadronic showers has some interesting advantages for testing Monte Carlo models:
 - Can study interactions on Tungsten
 - \checkmark Fine longitudinal granularity \Rightarrow can identify shower start well
 - ◆ Fine segmentation ⇒ charged spallation products can traverse several layers of W, compared to ~1 layer of Fe in our HCAL
 - ⋆ Large λ_{int}/X_0 (~29 for W c.f. ~10 for Fe) means e/m component can develop rapidly compared to hadronic.
- Main findings from comparing with eight physics lists in GEANT4.9.3
 - ✤ LHEP stands out as the least successful.
 - Total energy not a very useful discriminator.
 - Most lists underestimate transverse shower shape, especially at higher energies. FTF (Fritjof)-based models seem best here.
 - Longitudinal shower profiles allow some disentangling of components of shower. Mild preference for FTF lists, but none is perfect.
- Lower energy pions from FNAL in 2008 will soon provide interesting complementary information

Backup slides

IWLC 2010 Geneva Oct.'10

Physics lists in GEANT4.9.3

All are hybrids of several models; random selection between alternatives in the transition region in order to smooth behaviour.

IWLC 2010 Geneva Oct.'10

David Ward

