

Status of: CLIC Two-Beam Module Magnets R&D and Procurement

Michele Modena, CERN TE-MSC

IWLC10, WG8, 21October 2010

CLIC Two-Beam Module Test Program (refer to G.Riddone presentation)

CER

CLIC Two-Beam Module Test Program (refer to G.Riddone presentation)

	2010	2011	2012 2013
	L L LMA MJ J	ASONDJEMAMJJASONDJEMA	MJJASONDJFMAMJJASON
Fest Mod	ule		
hase 3	то		
9.2	Design of NCLinac hardware for test module	M24	
9.2	Prototype components for CLIC module prepared	Ν	ИЗб
	Phase 3 Design		
	Phase 3 Procurement		
	Phase 3: Component validation	(mainly for RE structures,	TD24)
	Phase 3 Assembly		
	Phase 3 Installation		
	Phase 3 Test		
Phase 4	T4 T1 T0		
9.3	Quad mock-up manufactured and ready for installation	M30	
	Phase 4 Design		
	Phase 4 Procurement		
	Phase 4 Assembly		
	phase 4 Installation		
	Phase 4 Test		

CÉRN

So, for "Test Module-LAB" Program (T4+T1+T0+T0), to be provided:

- 2 MB Quads (one Type1 and one Type4)
- 8 DB Quad

1) Main Beam Quads Status:

REAL magnets (nominal dimension an operating conditions) are under procurement for critical studies (nm stabilization)

Status of main components:

- Coils for 4 prototypes:

(2 Type1 and 2 Type 4): **OK, delivered and fully receptioned**

- Iron Quadrants for 2 prototypes:

at Metrology Lab under fine inspection (because not fulfilling the contractual tolerances)

First 10 Coils (for 2 magnets + spares) at CERN acceptance

Quadrants (for 2 magnets + spares) delivered at CERN Metrology Lab

Main Design and Operational Parameters for the actual (and for an alternative, bigger) version of the MBQ Type4

MAIN DEA	M Quadi uj	1016		
	17 turns magnet			
	(Present structure)		41 turns magnet	
Yoke length [mm]	1844		1844	
Magnet length [mm]	1901.8		1901.8	
Yoke weight [kg]	80×4=320		140×4=560	
Conductor weight [kg]	12.5×4=50		30×4=120	
Total magnet weight [kg]	370		680	
cooling circuit per mag	4		4	
ID number	6881		6881	
height/width [mm]	5.6		5.6	
hole diameter [mm]	3.6		3.6	
x=y [mm]	1		1	
r [mm]	1		1	
Nturns per pole	17		41	
Conductor Length per pole [m]	68		164	
I [A]	126		56	
Current density [A/mn^2	2] 6.01		2.67	
Resistance [mOhm]	241.3		581.95	
Inductance [mH]	42.8		248	
Power [W]	3831		1825	
Voltage [V]	30.4		32.59	
coolant velocity [m/s]	1.12		0.54	
cooling flow [l/min]	0.69		0.33	
Pressure drop [bar]	4.26		2.89	
Reynolds number	6147		2929	
Temperature rise [K]	20		20	

...similar procurement scheme expected for the "Test Module-CLEX Program": MB quads procurement, we could utilize the same magnets but, better ,the other 2 still under procurement...

<u>The Dipole Steering Correctors (</u>"fast steering", added later in the project): conceptual design exist; to be finalized and procured; it will be eventually mounted in a 2nd phase:

"type1" look-like assembly

2.) DriveBeam Quadrupoles Status:

Due to changes in the baseline (strength, space available, etc.) design activities still on-going, so for the starting activities of the "Test Module-LAB" Program (i.e. next year), <u>mock-ups</u> will be procured:

Mock-ups intend to simulate: <u>overall dimensions</u>, <u>weight</u>, <u>interfaces with other components</u> (vacuum chamber, BPM, etc,) and <u>thermal load</u> toward neighbor components (by means of small electrical heaters).

For 2nd phase of the LAB activities and for the "Test Module-CLEX" Program, real magnets will be provided. R&D is proceeding on two lines:

- a) Baseline with an <u>electro-magnetic</u> quad design
- b) Alternative option with <u>tunable permanent magnet design</u>.

a) Baseline electro-magnetic design

CLIC DB Quadrupole Parameters	Units									
Assembled MAGNET										
Magnet size H×S×L	net size H×S×L [mm×mm×mm] 390×390×286									
Magnet mass	[kg]	149.2								
Full aperture	[mm]	26								
Good field region(GFR) diameter	[mm]	11×2=22								
		YOKE								
Yoke size H×S×L	[mm×mm×mm]	390×390×180								
Yoke mass	[kg]		29.4×4=117.6							
COIL										
Hollow Conductor size	[mm]	6×6, Ø=3.5								
Number of turns per coil		52								
Total conductor mass	[kg]	31.6								
		Operation mode								
		Nom."min"(10%)	Nom."max"(100%)	"Ultimate" (120%)						
Magnetic length	[mm]	194.7	194	192.5						
Gradient at Z=0	[T/m]	6.26	62.78	75.85						
Integrated gradient JGdl	[T]	1.218	12.18	14.6						
Integrated gradient quality in GFR	%	0.04	0.01	0.02						
Electrical parameters										
Ampere turns per pole	[A]	432	4840	9100						
Current	[A]	8.3	93	175						
Current density	[A/mm ²]	0.3	3.6	6.8						
Total resistance	[mOhm]	99	99	99						
Total inductance	[mH]	40	40	40						
Voltage	[V]	0.82	9.2	17.3						
Power	[kW]	0.007	0.86	3.03						
COOLING		Air (natural convection)	Water	Water						
Cooling circuits per magnet			4	4						
coolant velocity	[m/s]		1.1	1.9						
cooling flow per circuit	[l/min]		0.6	1.1						
Pressure drop	[bar]		2.2	5.7						
Reynolds number			4122	8210						
Temperature rise	[K]		5	10						

...integration with other critical components (BPM, PET, vacuum pipe, etc.) quite delicate...

b) Optional Tunable Permanent Magnet Design

(refer to presentation of **J. Clarke** in WG 6 Session of Wednesday 20 Oct. morning)

Advantages:

-Very limited electrical requirements (moving actuators)- no cooling needs

Disadvantages (or specific difficulties):

-Complexity (moving parts) -Reliability (tuning is individual) -Stability of the PM blocks versus: time/temperature/radiation

Cost :

Limit the production cost for a so impressive series (> 40000 units), is a challenging aspect (but this for <u>both</u> solutions).

<u>Steering capability (static)</u> required also for the DBQ,

proposal is:

- for EM baseline design: steering by <u>current trim</u> in the main coils

- for the optional PM design: steering by <u>mechanical displacement</u> <u>of the quadrupole (</u>extra-movement of the structure).

Conclusions:

-<u>MB QUAD:</u> prototypes procurement is ongoing: we have components at CERN to start the assembly of two quads (Type1 and Type4). -Components for other two prototypes are also under procurement.

- <u>DB QUADS:</u> design is proceeding on two lines: a classical EM design and a Tunable PM design.

-Prototypes procurement for both solutions will be soon launched.

-<u>BEAM STEERING</u> possible solutions were also defined and are under design for both type of quadrupoles.

Acknowledgments:

Thanks to all the (small) team working on this R&D and procurement program: **<u>R. Leuxe, A.Newborough, E.Solodko, M.Struik, A.Vorozhtsov</u>**

Thank you for the attention