

Vacuum system for the CLIC two-beam modules

C. Garion CERN/TE/VSC

Outline

- Vacuum system in the CLIC module
 - Overview
 - Specificities
- Vacuum dynamics for a non-baked system
- Vacuum chambers for the main beam quadrupoles
- Vacuum in the accelerating structures
 - Different vacuums
 - Static vacuum
 - Dynamic vacuum
- Interconnections
- Conclusions

Vacuum system in the CLIC module

Vacuum system in the CLIC module

Requirements

Field ionization studies resulted in a lowering of the vacuum threshold for fast ion beam instability to: pressure < 1 nTorr [G. Rumulo]

Specificities

- Non-baked system → vacuum is driven by water
- 2. Low conductance (beam pipe diameter ~ 10 mm) and large areas (~3000 cm²/AS)

Typical shape and dimensions of an accelerating structure disk

Vacuum dynamics for a non-baked system

Elements of theory

Vacuum dynamics for a non-baked system

Elements of theory

For the design of a vacuum system the outgassing rate is usually used. For an non baked system, a simplified evolution law is used:

$$q_h = \frac{q_1}{h} + q_{\lim}$$

From an engineering point of view: q [mbar.l/s/cm²] ~ 2.10⁻⁹ / t[h] (valid for all metals)

Vacuum chambers for the MB quadrupoles

- Length L of the magnet is comprised between
- ~50cm and 2 m
- The aperture diameter is around 10 mm

In steady state: $\frac{d^2P}{dx^2} = -\frac{c}{a}$

with c the unit conductance of the tube and a the gas desorption per unit length

$$\overline{P}$$
 (after 100 hours of pumping)
 $L = 2 \text{ m}$

$$\overline{P} (S \to \infty) \sim q \left(\frac{L}{r}\right)^2$$

~2.10⁻⁸ mbar

→ Distributed pumping is mandatory

Vacuum chambers for the MB quadrupoles

Present design:

Stainless steel vacuum chamber, squeezed in the magnet

NEG strips sited in 2 antechambers

Copper coated

Effective pumping speed per unit length: SeffQh2/I

Pressure in the central part is determined by the gap → reduce the sheet thickness → stability becomes an issue (0.3 mm for the prototype)

 $q = 2.10^{-11} \text{ mbar.l/s.cm}^2 \rightarrow P \sim 8.10^{-10} \text{ mbar}$

Prototype has been manufactured and is being tested.

Stainless steel

Buckling mode

Dynamic vacuum in the accelerating structures

Different vacuum inside the PETS and the accelerating structures can be considered:

- Static: pressure after pump down without RF power and beams
- Dynamic: during breakdown
- Dynamic: during RF pulses without breakdown

Vacuum analysis based on thermal/vacuum analogy

Implementation in a FE code and application to the CLIC module

Gas flow equation (1D):

8.40E-10

C. Garion, IWLC 2010

Abscissa [m]

Abscissa [m]

ynamic vacuum in the accelerating structure

Assumptions:

- 10¹² H₂ molecules released during a breakdown [Calatroni et al.]
- Gas is at room temperature (conservative)

Requirement: Pressure<10⁻⁹ mbar 20ms after breakdown Monte Carlo simulation or thermal analogy

Maximum pressure during time

Longitudinal distribution as a function of time

Absissa [cm]

Vacuum degradation remains localized close to the breakdown and seems not to be an issue.

Vacuum in the accelerating structures with RF

See S. Calatroni, Accelerator session: WG 4

Qualitatively:

- Thermal effect related to the power dissipation leading to thermal outgassing (conditioning)
- Field emission leading to electron stimulated desorption and/or to local heating
 - 1. Dark current simulations from SLAC
 - 2. ESD data on unbaked copper at high e⁻ energy from CERN [Pasquino, Calatroni]
 - 3. Introduce these into MC models and get gas distribution, with reasonable assumptions on molecule's speed.

Direct measurements seem not to be feasible due to timescale

Drive beam interconnections

Main beam interconnections

Non standard flange study

Conclusions

The vacuum system of the CLIC main linac is non-standard:

- non-baked system with low pressure requirements, low conductances and large surface areas:
 - Static vacuum seems to be achieved only marginally with present design
 - Dynamic vacuum due to breakdowns seems to be under control
 - Dynamic vacuum due to field emission: the problems seems to be real
- extremely limited space for vacuum system and interconnections