

germana.riddone@cern.ch

Two-beam acceleration: twobeam prototype validation program

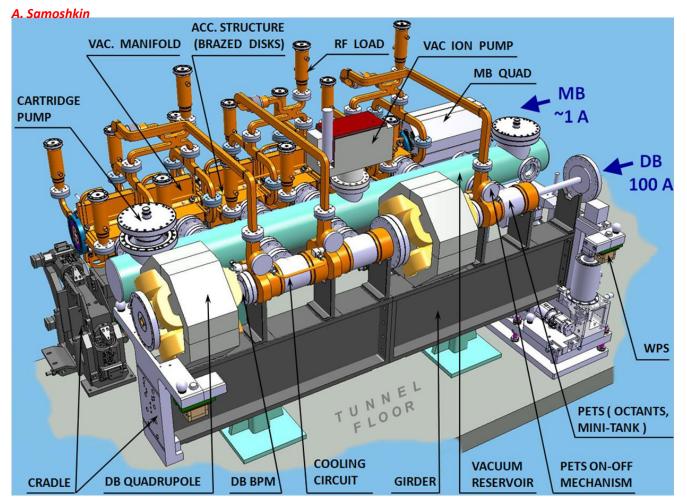
<u>G. Riddone</u> in collaboration with N. Gazis, D. Gudkov, A. Solodko (input from CLIC Module WG members)

OUTLINE

- Two beam acceleration feasibility issue
- Prototypes modules to be tested without RF and beam: design and procurement status, objectives, schedule
- Prototypes modules to be tested with RF and beam: design and procurement status, objectives, schedule

21-Oct-2010

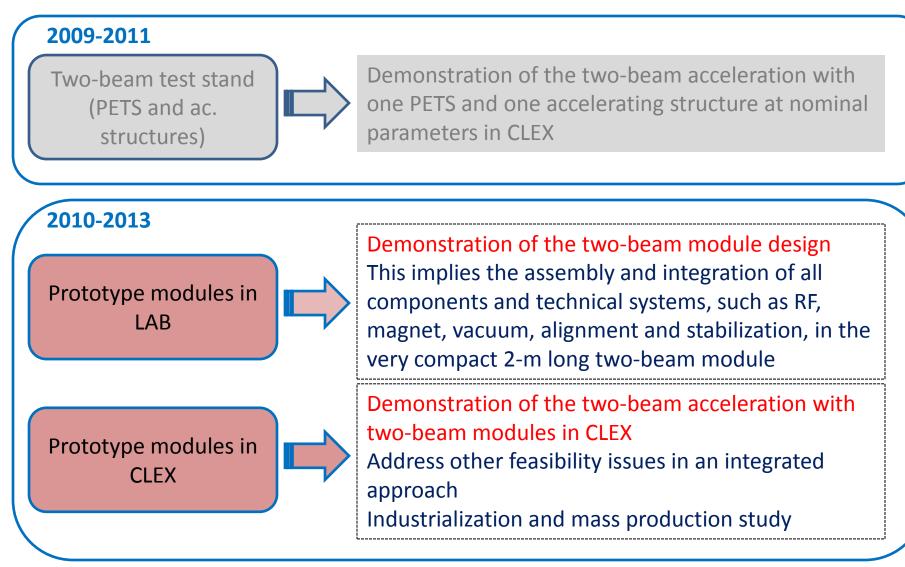
CLIC FEASIBILITY ISSUES


g	System	ltem	Feasibility	Unit	Nominal					
	System	item	Issue							
			Fully loaded accel effic	%	97					
			Freq&Current multipl	-	2*3*4					
		Drive beam	12 GHz beam current	Α	4.5*24=100					
		generation		nsec	240					
			Intensity stability	1.E-03	0.75					
			Drive beam linac RF phase stability	Deg (1GHZ)	0.05					
			PETS RF Power	MW	130					
		Beam	PETS Pulse length	ns	170					
		Driven RF	PETS Breakdown rate	/m	< 1.10-2					
	Two Beam	power	PETS ON/OFF	-	@ 50Hz					
	Acceleration	generation	Drive beam to RF efficiency	%	90%					
			RF pulse shape control	%	< 0.1%					
		Accelerating	Structure Acc field	MV/m	100					
		Structures	Structure Pulse length	ns	240					
		(CAS)	Structure Breakdown rate	/m MV/m.ns	< 3.10-7					
			Power producton and probe beam acceleration in Two beam module	MV/m - ns	100 - 240					
		Two Beam Acceleration	Drive to main beam timing stability	psec	0.05					
			Main to main beam timing stability	psec	0.07					
		Ultra low	Emitttance generation H/V	nm	500/5					
	Ultra low	Emittances	Emittance preservation: Blow-up	nm	160/15					
	beam	Alignment	Main Linac components	microns	15					
	emittance &	Angiment	Final-Doublet	microns	2 to 8					
	sizes	Vertical	Quad Main Linac	nm≻1 Hz	1.5					
		stabilisation	Final Doublet (assuming feedbacks)	nm>4 Hz	0.2					
		nd Machine	72MW@2.4GeV							
	Protection S	ystem (MPS)	main beam power of 13MW@1.5TeV							

Demonstration of novel scheme of two beam acceleration in compact modules integrating all technical systems for RF production, beam measurement and acceleration including alignment, stabilisation and vacuum at their nominal parameters.

CLIC TWO-BEAM MODULES

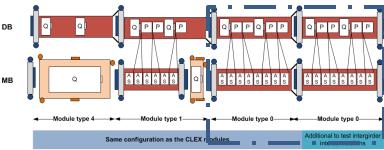
germana.riddone@cern.ch



Prototype modules \rightarrow as close as possible to CLIC modules

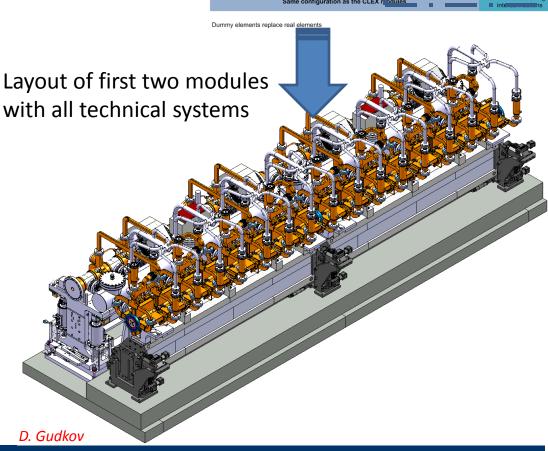
WG 8 "Technical design"

germana.riddone@cern.ch


PROTOTYPE TWO-BEAM MODULES IN THE LAB

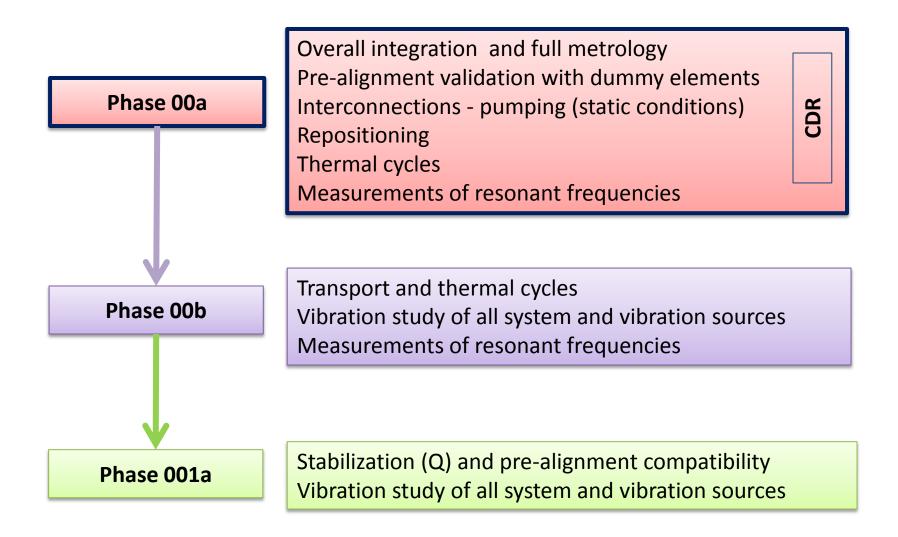
PROTOTYPE MODULES TO BE TESTED IN A LAB

germana.riddone@cern.ch


4 modules representative of all CLIC module types First two modules under procurements Reception at factory of girders started on 20 October

₩G 8 "Technical design"

SiC girder before final Grinding at Boostec

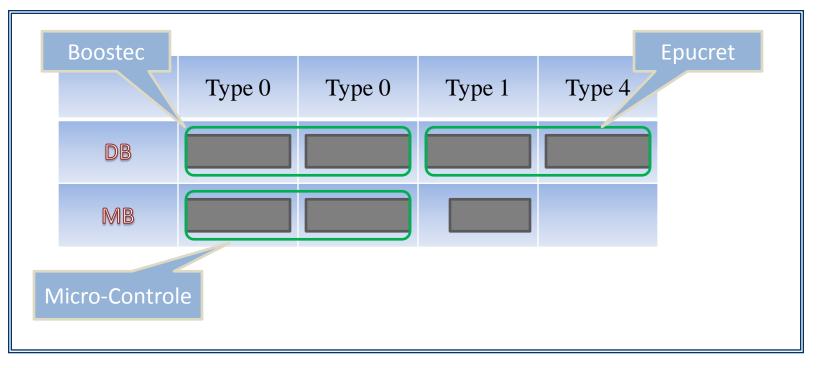

germana.riddone@cern.ch

- Integration of all technical systems (dummy RF structures and quadrupoles can be used – real dead weight and interfaces to other systems)
- Validation of different types of girders and movers
- Pre-alignment of girders/quadrupoles in the module environment, including fiducialisation
- Full metrology of the module components
- Validation of interconnections under different simulated thermal loads
- Stabilization of main beam quad in the module environment
- Vibration study of all systems and identification of vibration sources
- Measurement of resonant frequencies (both in lab and in the tunnel/underground area)
- Simulation of several thermal cycles: measurements of thermal transients (e.g. how long it takes to achieve a new equilibrium state), fiducialisation verification
- Transport of the module and verification of alignment

CLIC'09

WG 8 "Technical design"

germana.riddone@cern.ch

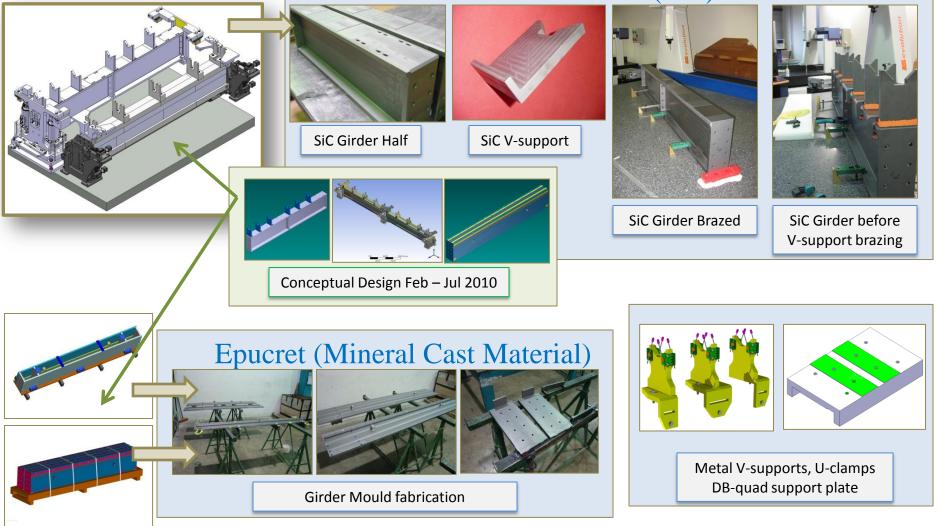


WG 8 "Technical design"

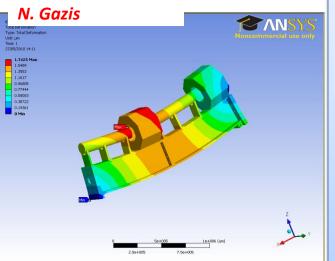
PROTOTYPE GIRDERS

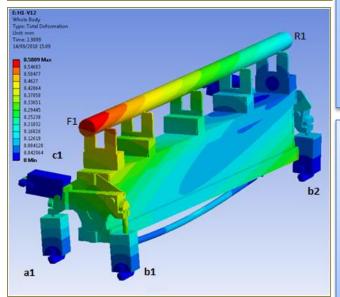
N. Gazis

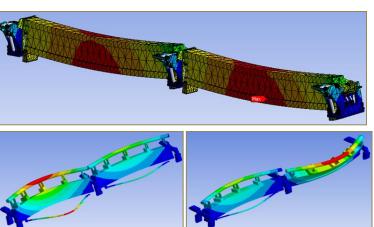
<u>3 companies</u> with three different strategies:

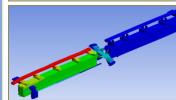

- **Booste**c: supply of 2 SiC girders with V-shaped supports [Nov 2010]
- **Microcontrole**: supply of 2 SiC girders with V-shapes supports, and positioning system [Dec 2010]
- **Epucre**t: supply of 2 Mineral cast girders [Nov 2010]

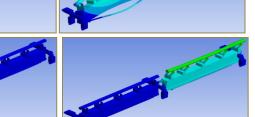
PROTOTYPE GIRDERS


N. Gazis

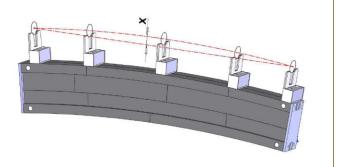

Boostec (SiC)


PROTOTYPE GIRDERS - ANALYSIS





 > Modal Analyses for all CLIC Two-Beam Module Girder prototype configurations:
 Eigenfrequencies (f) ≥ 35 Hz
 > Static Analyses of loaded CLIC Two-Beam Module Girder prototype
 configurations: 80 µm ≥ Deformations (ε) ≥ 10 µm


Pre-stressed girders, according to the simulated RF component loads, with precision machining after the integration of the V-shaped supports.

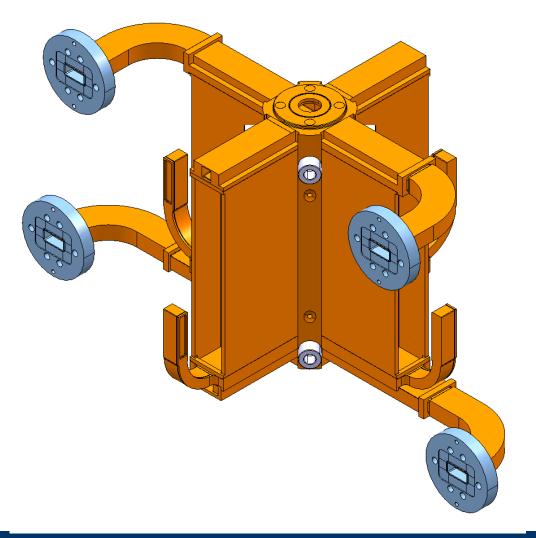
Modal Analysis

Pre-stressed solution

WG 8 "Technical design"

21-Oct-2010

11

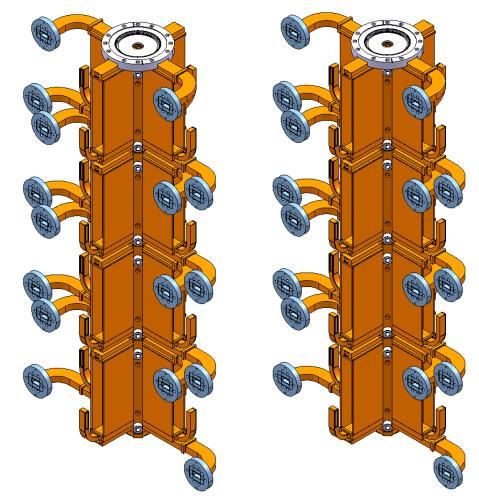


MAIN BEAM AS ASSEMBLY SEQUENCE (1/4)

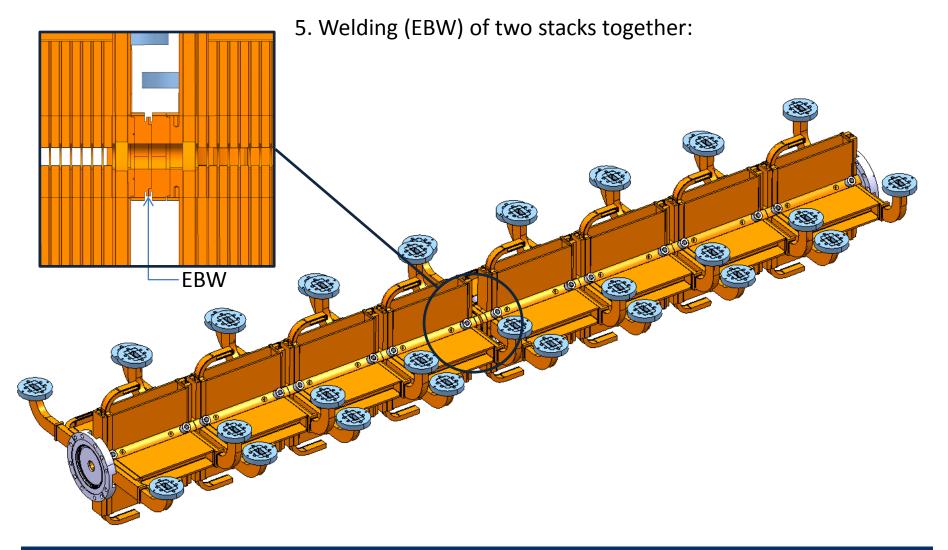
D. Gudkov

 Brazing of the manifolds (preliminary brazed);

2. Brazing of plugs and cooling fittings adapters;



MAIN BEAM AS ASSEMBLY SEQUENCE (2/4)

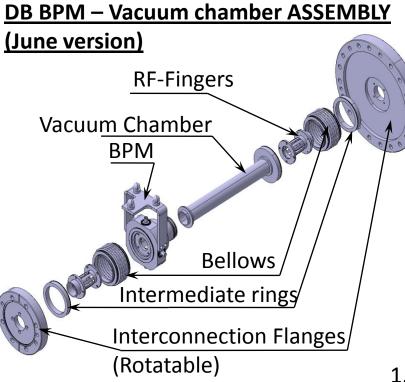

3. Brazing of 2 stacks 1005 mm long each:Includes:4 AS with manifolds;Interconnection MB-MB;

4. Installation of the damping material and EB welding of covers

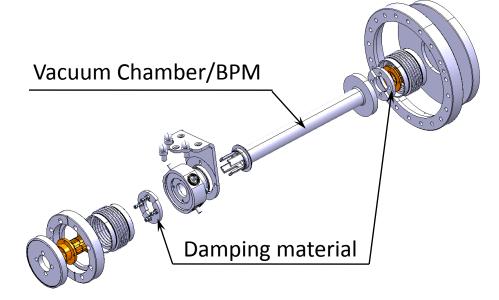
D. Gudkov

21-Oct-2010

MAIN BEAM AS ASSEMBLY SEQUENCE (4/4)

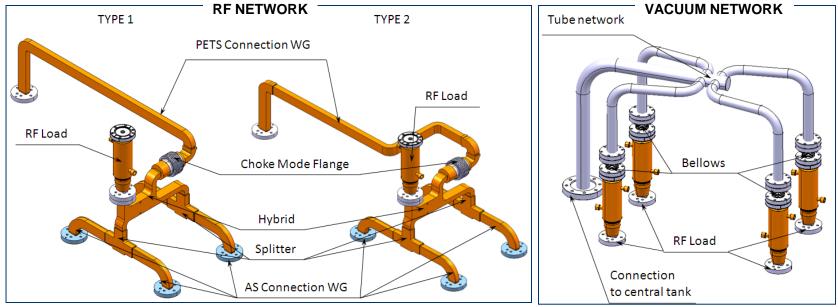

6. Installation of splitters;

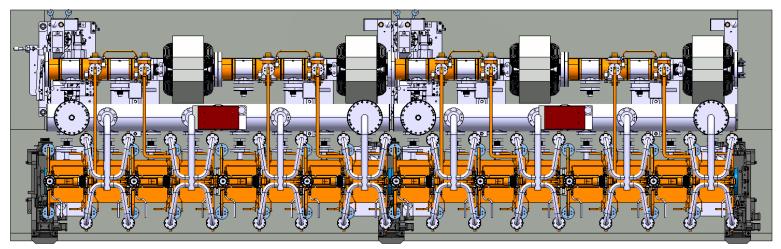
- 7. Installation of alignment targets (spheres);
- 8. Installation of cooling adapters;
- 9. Installation of cooling tubes.



DRIVE BEAM BPM DESIGN UPDATE

DB BPM – Vacuum chamber ASSEMBLY (July version)




- 1. Vacuum chamber and BPM are joined as one part to increase the precision;
- 2. Damping material added;
- 3. Alignment frame is finalized;
- 4. Production drawings: CLIATLBI0009

RF AND VACUUM NETWORKS

D. Gudkov

21-Oct-2010

WG 8 "Technical design"

PRTOTOTYPE MODULES – LAB: SCHEDULE

germana.riddone@cern.ch

			2010					2011										2012												2013				3												
		J	F	м	A		J		Α	s	0	N	D	J	F	N	1 4		м	J	J	Α	s	0	N	D	J	F	м	А		J		А	s	0	N	D	J	F				J	J	
		M1	M2	Ξ	t L	S N N	9 E	È	× ×	N9	010 M	M11	M12	M13					T M	M18	M19	M20				M24	M25	M 26				M30	12M	M32	M33	M34	M35	M36						M42	M43	
Engineering Des	ign																																													
Procurement																																														
Assembly 00	ТО ТО																																													
Testing 00	ТО ТО												>																																	
Assembly 001	T1 T0 T0]																																												
Testing 001	T1 T0 T0																									>																				
Assembly 0014	T4 T1 T0 T0]																																												
Testing 0014	T4 T1 T0 T0																																Σ													

Actuators/sensors under fabrication

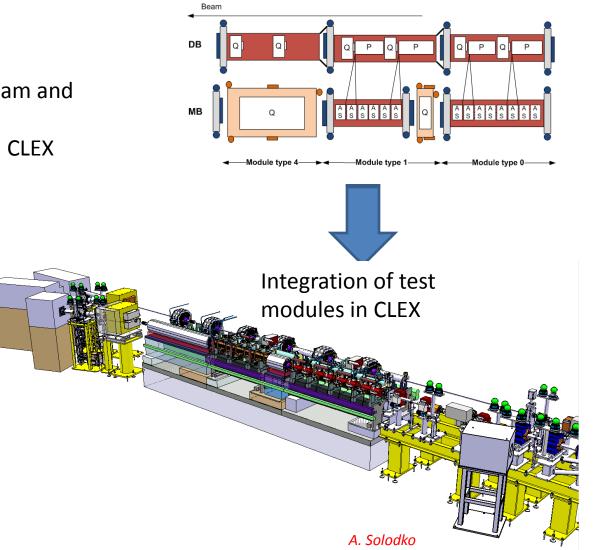
MB T1 and T4 at CERN

Girders under fabrication

Under tendering: vacuum system , beam instrumentation and RF system

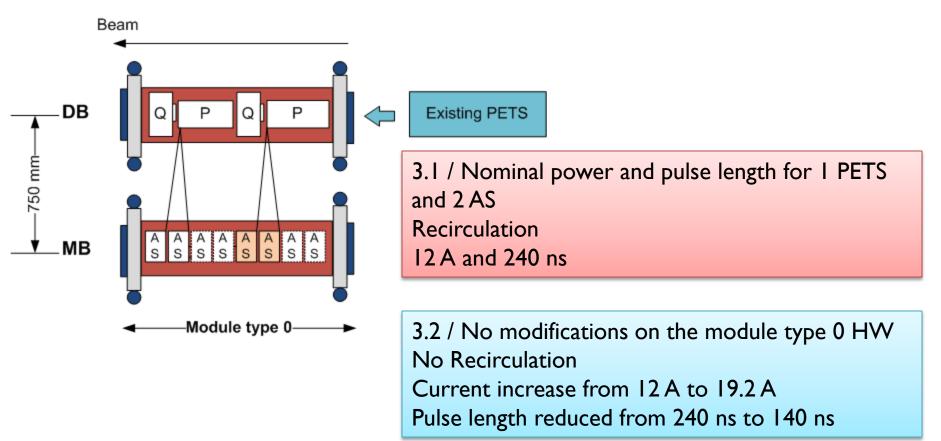
<mark>For details, see</mark> EDMS number: <u>1076281</u>

PROTOTYPE TWO-BEAM MODULES IN CLEX


- Two-beam acceleration in compact modules integrating all technical systems for RF production, beam measurement and acceleration including alignment, stabilisation and vacuum at their nominal parameters.
- Accelerating structure alignment on girder using probe beam
- Wakefield monitor (WFM) performance in low and high power conditions, and after a breakdown
- Investigation of the breakdown effect on the beam
- Alignment and stabilization systems in a dynamic accelerator environment
- RF network phase stability especially independent alignment of linacs
- Vacuum system performance, both static and dynamics with rf
- Cooling system, especially dynamics due to beam loss and power flow changes
- Validation of assembly, transport, activation, maintenance etc.

CLIC'09

PROTOTYPE MODULES TO BE TESTED IN CLEX


germana.riddone@cern.ch

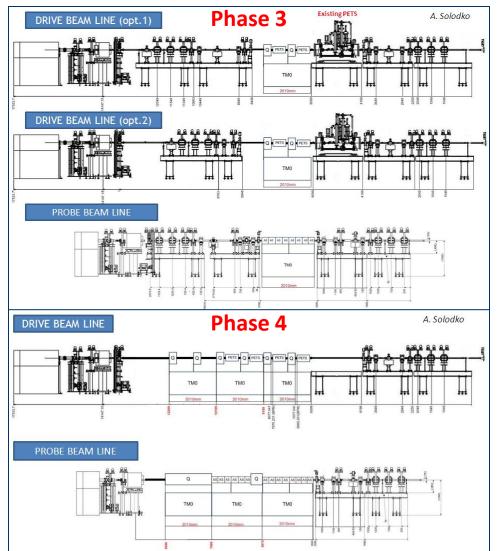
- 3 modules to be tested with beam and RF
- module layout compatible with CLEX requirements:
 - double length PETS
 feeding two accelerating
 structures
 - accelerating structures
 with all technical
 systems and damping
 features
- First module to be ready by end of 2011

Phase 3 foresees the installation and testing of 1 module type 0: AS equipped with WFM (5 um accuracy / few WFM in the 1st powered AS)

PROTOTYPE MODULE - CLEX: PHASE 4

germana.riddone@cern.ch

21-Oct-2010


23

WG 8 "Technical design"

PROTOTYPE MODULES - INSTALLATION IN CLEX

germana.riddone@cern.ch

Phase 3:

-Existing PETS (currently under test) will be reused
- It will be moved to allow for Type 0 module installation

Phase 4:

-Instrumentation downstream the type 0 module will be removed

- Installation of type 1 and 4 without displacing type 0

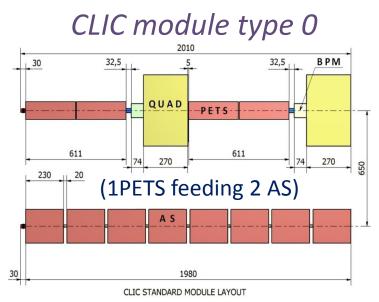
PRTOTOTYPE MODULES – CLEX: SCHEDULE

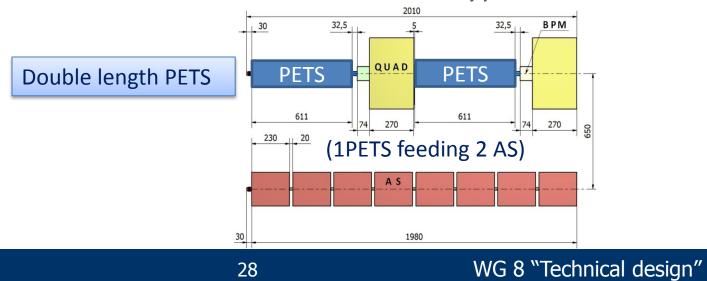
germana.riddone@cern.ch

iuuone @cern.			EuCARD		
		2010	2011	2012	2013
	J F I				
Test Modu	le				
Phase 3	то				
9.2	Design of NCLinac hardware for test module		M24		
9.2	Prototype components for CLIC module prepared			M36	
	Phase 3 Design				
	Phase 3 Procurement				
	Phase 3: Component validation		(mainly for RF struc	tures, TD24)	
	Phase 3 Assembly				
	Phase 3 Installation				
	Phase 3 Test				
Phase 4	T4 T1 T0				
9.3	Quad mock-up manufactured and ready for installatio	on	M30		
	Phase 4 Design				
	Phase 4 Procurement				
	Phase 4 Assembly				
	phase 4 Installation				
	Phase 4 Test				

- Two-beam module is part of the CLIC feasibility program
- At the end of 2009 the prototype module project has been approved: 7 modules
- Prototype Module project very challenging:
 - Non standard procurement, several iterations needed with firms
 - First girders in Nov 2010 for type 0 test modules in the lab, although reception at factory already started
 - Eucard WP 9.2 NC linac NC accelerating cavities is part of test modules in CLEX → several collaborators highly contributing
- Next months will be very busy with the assembly of the first two modules: metrology and thermal cycles tests are expected to be finished before CDR

germana.riddone@cern.ch


EXTRA SLIDES


FROM CLIC MODULE TO CLEX MODULE

germana.riddone@cern.ch

Parameters	CTF3	CLIC
Energy	0.150 GeV	2.4 GeV
Pulse length	I.2 μs	I 40 μs
Multiplication factor	2 × 4 = 8	2 × 3 × 4 = 24
Linac current	3.75 A	4.2 A
DB final current	30 A	100 A
RF frequency	3 GHz	I GHz
Repetition rate	up to 5 Hz	50 Hz
Energy per beam pulse	0.7 kJ	I 400 kJ
Average DB power	3.4 kW	70 MW

CLEX module type 0

