

31.87

ic

Electron

Marc Ross <u>Nick Walker</u> Akira Yamamoto

SCRF High-Gradient R&D

Production* cavities achieving specified gradient

Production*: cavities having followed baseline ILC production process, as defined by specific cuts specified by the **GDE International Database Team**

SCRF High-Gradient R&D

N. Walker et al

İİİ

Cryomodule Development & Test

• KEK: STF – S1-Global

- FNAL: Cool-down of CM-1
 - at new NML facility
- DESY: XFEL prototype
 PXFEL-1
 - <32 MV/m>
 - Operational as ACC7 in FLASH (~30MV/m)

N. Walker et al

*☆***Fermilab SLAC**

S1-Global @ KEK

S1-Global @ KEK

- Hybrid design with components from all three regions
 - KEK: 4 cavities in 1 cryostat
 - DESY: 2 cavities
 - FNAL: 2 cavities INFN / ZANON cryostat

Comprehensive test programme

- International team
- Cool-down carefully monitored
 - component alignment
- Performance test of different component designs
 - 2 types of HP coupler
 - 3 types of cavity tuner

Currently on-going

- High-power pulse tests: 6 from 8 cavities tested
- Piezo-tuner experiments (Lorentz Force Deturning)

Integrated Systems Tests

NML (FNAL)

• (3 CM)

Under construction
Up to 6 cryomodules
Operation: end 2012

FLASH (DESY)

• TDP focus

ir

- 7 CM \rightarrow 1.2 GeV beam
- photon user facility

"9mA experiment" achieved ~1800 bunches at 9mA in 09.2009

 $\Delta E/E_{RMS}$ ~0.5% (@ 0.8 GeV) ~0.1% within pulse Full systems integration testing

STF (KEK)

- "Quantum Beam" experiment 2011
- 1 CM with beam 2013
- (2 CM 2015)

New Configuration for FLASH@DESY

ACC7 cavity quench limits and gradient spread are approaching ILC spec

Opportunity to study:

- Gradient overhead and RF power overhead near ILC gradients
- RF distribution setup schemes with cavity powers close to ILC spec
- Lorentz-force detuning + piezo compensation near ILC gradients
- Two 9mA runs planned for 2011
 - January
 - Late Autumn (TBC)

Significant improvements in operability during 2010 (LLRF)

European XFEL

Construction of worlds largest SCRF linac begins (10% ILC prototype)

~800 cavities, ~100 cryomodules

~600 cavities already ordered (2 vendors)

First beam: 2014

N. Walker et al

İİĹ

Beam Test Facilities (non SCRF)

Two Large Scale Test Facilities for R&D:

 Damping Ring (ATF, CesrTA)
 Beam Delivery System (Final Focus) (ATF2)

CesrTA (Cornell)

CesrTA Programme (Collaboration)

Comparison of 6.4 and 3.2 km DR Options

Summer 2010 Evaluation

- Comparison of Single Bunch EC Instability Thresholds for:
 - 6.4km ring with 2600 bunches
 - 3.2km ring with 1300 bunches

Same average current

 Both ring configurations exhibit similar performance

⇒ 3.2km ring (*low current* option) is an acceptable baseline design choice

S. Guiducci, M. Palmer, M. Pivi, J. Urakawa on behalf of the ILC DR Electron Cloud Working Group

18.10.10

Mitigation Evaluation conducted at satellite meeting of ECLOUD`10 (October 13, 2010, Cornell University)

EC Working Group Baseline Mitigation Recommendation

	Drift*	Dipole	Wiggler	Quadrupole*
Baseline Mitigation I	TiN Coating	Grooves with TiN coating	Clearing Electrodes	TiN Coating
Baseline Mitigation II	Solenoid Windings	Antechamber	Antechamber	
Alternate Mitigation	NEG Coating	TiN Coating	Grooves with TiN Coating	Clearing Electrodes or Grooves

*Drift and Quadrupole chambers in arc and wiggler regions will incorporate antechambers

- Preliminary CESRTA results and simulations suggest the presence of subthreshold emittance growth
 - Further investigation required
 - May require reduction in acceptable cloud density ⇒ reduction in safety margin
- An aggressive mitigation plan is required to obtain optimum performance from the 3.2km positron damping ring and to pursue the high current option

S. Guiducci, M. Palmer, M. Pivi, J. Urakawa on behalf of the ILC DR Electron Cloud Working Group

ÌİĻ

- Shintake laser monitor (LBM) improved S/N
 - **Significant progress** $-\sigma_v \sim 310 \text{ nm}$ on optics [goal: 38 nm]
 - beam based alignment
 - tuning algorithms
 - optics modelling
- 2010/11 run just beginning

Conventional Facilities & Siting

- Sites considered (technical solutions)
 – Europe - CERN, Dubna
 - USA FNAL
 - Asia 2 sites in Japan (mountainous regions)

Conventional Facilities & Siting

- Sites considered (technical solutions)
 – Europe - CERN, Dubna
 - USA FNAL

Asia - 2 sites in Japan (mountainous regions)

Review committee members at the Kannagawa hydroelectric power plant during the CFS review meeting held in June. Image : Nobuko Kobayashi/ courtesy of Tokyo Electric Power Company

Conceptual Civil Engineering Study in a Mountainous Region

CFS: Other Regions

Accelerator Design & Integration

- **2009 Design Studies** – on-going
- Cost Constraint
 'Global' Value Engineering
- Towards an agreedupon baseline for the TDR
 - Top-Level Change Control Process (TLCC)
 - Communication with stakeholders (e.g.
 <u>Physics & Detector</u> groups)

SB2009 Themes

TLCC Themes

TLCC Themes

TLCC Process

Issue Identification

• Planning

ilc

- Identify further studies
- Canvas input from stakeholders

Baseline Assessment Workshops

- Face to face meetings
- Open to all stakeholders
- Plenary

Formal Director Approval

- Change evaluation panel
- Chaired by Director

keywords: open, transparent

TLCC Process

- 1. Accelerating Gradient
- 2. Single-tunnel (HLRF)

1st BAW KEK 7-10th Sept. 2010

Proposals submitted to director

Issue Identification

- Planning
- Identify further studies
- Canvas input from stakeholders

Baseline Assessment Workshops

- Face to face meetings
- Open to all stakeholders
- Plenary

Formal Director Approval

- Change evaluation panel
- Chaired by Director

keywords: open, transparent

Single Tunnel Options (HLRF)

- Distributed RF Sources (DRFS)
 - 800 kW MAK

ic

- Everything in tunnel
- Klystron Cluster Scheme (KCS)
 - Surface clusters of klystrons (2×32 MBK)
 - RF power distributed via overmoded waveguide (350 MW)
 - ±1 km
- RDR HLRF Technology
 - e.g. XFEL-like solution (pulsed cables)
 - Back-up (risk-mitigation)

BAW-1: Recommendations

1. Gradient

;|r ijc

- Approx. 58 participants physics & detector reps. Remain at 31.5 MV/m average accelerating gradient
 - \rightarrow fixed tunnel length
- Additional RF power to accommodate a spread in gradient $(\pm 20\%)$
 - \rightarrow higher mass-production yield expected \Rightarrow cost effective
- TDP2 R&D remains ≥35 MV/m low-power vertical test (90% yield)
 - infers $\langle G \rangle \sim 38$ MV/m VT (additional margin)

Single-Tunnel (Main Linac) 2.

- Go forward with SB2009 proposal
- Both KCS and DRFS R&D have significantly progressed
- Inclusion of RDR HLRF Technology option as back-up solution

http://ilcagenda.linearcollider.org/conferenceTimeTable.py?confld=4593

TLCC Process

- 1. Accelerating Gradient
- 2. Single-tunnel (HLRF)
- 3. Low-Power Parameter
- 4. Positron source location

1st BAW KEK 7-10th Sept. 2010 2nd BAW SLAC 18-21st Jan. 2011

Issue Identification

Planning

:lr

İİL

- Identify further studies
- Canvas input from stakeholders

Baseline Assessment Workshops

- Face to face meetings
- Open to all stakeholders
- Plenary

Formal Director Approval

- Change evaluation panel
- Chaired by Director

This workshop critical important milestone for TLCC process

keywords: open, transparent

BAW-2 Themes

								upgrade
Centre-of-mass energy	E_{cm}	GeV	200	230	250	350	500	1000
Luminosity	L	$\times 10^{34} \text{ cm}^{-2} \text{s}^{-2}$	0.5	0.5	0.7	0.8	1.5	2.8
Luminosity (Travelling Focus)	L _{TF}	$\times 10^{34} \text{ cm}^{-2} \text{s}^{-2}$	0.5		0.8	1.0	2.0	
Number of bunches	n_b		1312	1312	1312	1312	1312	2625
Collision rate	f_{rep}	Hz	5	5	5	5	5	4
Electron linac rate	f_{linac}	Hz	10	10	10	5	5	4
Positron bunch population	N_+	$\times 10^{10}$	2	2	2	2	2	2

Formally agreed parameter sets across energy range ILC-EDMS document ID 925325

http://ilc-edmsdirect.desy.de/ilc-edmsdirect/document.jsp?edmsid=*925325

More work and discussion needed (\rightarrow this workshop)

ilc

BAW-2 Themes

								upgrade
Centre-of-mass energy		GeV	200	230	250	350	500	1000
Luminosity	L	$\times 10^{34} \text{ cm}^{-2} \text{s}^{-2}$	0.5	0.5	0.7	0.8	1.5	2.8
Luminosity (Travelling Focus)	L _{TF}	$\times 10^{34} \text{ cm}^{-2} \text{s}^{-2}$	0.5		0.8	1.0	2.0	
Number of bunches	n_b		1312	1312	1312	1312	1312	2625
Collision rate	f_{rep}	Hz	5	5	5	5	5	4
Electron linac rate	f_{linac}	Hz	10	10	10	5	5	4
Positron bunch population	N_+	$\times 10^{10}$	2	2	2	2	2	2

Primary motivation for low-power:

- Reduced RF power (modulators, klystrons, associated CFS)

- Smaller circumference damping ring (6.4 km \rightarrow 3.2 km)

ir

BAW-2 Themes

								upgrade
Centre-of-mass energy	E_{cm}	GeV	200	230	250	350	500	1000
Luminosity	L	$\times 10^{34} \text{ cm}^{-2} \text{s}^{-2}$	0.5	0.5	0.7	0.8	1.5	2.8
Luminosity (Travelling Focus)	L _{TF}	$\times 10^{34} \text{ cm}^{-2} \text{s}^{-2}$	0.5		0.8	1.0	2.0	
Number of bunches	n_b		1312	1312	1312	1312	1312	2625
Collision rate	f_{rep}	Hz	5	5	5	5	5	4
Electron linac rate	f_{linac}	Hz	10	10	10	5	5	4
Positron bunch population	N_{+}	$\times 10^{10}$	2	2	2	2	2	2

Primary motivation for low-power:

- Reduced RF power (modulators, klystrons, associated CFS)

- Smaller circumference damping ring (6.4 km \rightarrow 3.2 km)

Low E_{cm} running luminosity improved (over original SB2009)

-10Hz alternative pulse operation mode for e+ production \rightarrow const. charge

- Modular Final Doublet to adjust IP focusing

ilc

BAW-2 Issues

	BAW-2 Issues						
Travelling Focus	 More detailed simulations required Stability issues → impact on feedback and tolerances considered higher-risk option Inclusion not a cost issue 						
10Hz Operation (Low E _{cm})	 Positron damping ring 50% duty cycle RF solution still required (this workshop) Understanding cost impact (1.9% TPC) Other emerging options (high-field undulator) 						
Upgrade / Risk- Mitigation	 Understand scenarios for re-establishing RDR bunch number Cost impact (mostly CFS) Considered either as possible luminosity upgrade or risk-mitigation (GDE PAC) 						
Physics impact	Working with Physics & Detector groups as part of the TLCC process						

1TeV Upgrade

								upgrade
Centre-of-mass energy	E_{cm}	GeV	200	230	250	350	500	1000
Luminosity	L	$\times 10^{34} \text{ cm}^{-2} \text{s}^{-2}$	0.5	0.5	0.7	0.8	1.5	2.8
Luminosity (Travelling Focus)	L _{TF}	$\times 10^{34} \text{ cm}^{-2} \text{s}^{-2}$	0.5		0.8	1.0	2.0	
Number of bunches	n_b		1312	1312	1312	1312	1312	2625
Collision rate	f_{rep}	Hz	5	5	5	5	5	4
Electron linac rate	f_{linac}	Hz	10	10	10	5	5	4
Positron bunch population	N_+	$\times 10^{10}$	2	2	2	2	2	2

1 TeV Upgrade parameter set now added

- Tentative (subject to change)
- Assumes re-establishment of full RDR bunch number

Complete scope of TeV upgrade will be studied in 2011 (input for TDR)

N. Walker et al

ir

18.10.10

TDR: Five Themes to Develop

TDR: Five Themes to Develop

(Global) Mass Production (SCRF)

KEK Industrial R&D Pilot Plant

18,10,10

ilc

Highlights in Summary

- Progress on all R&D fronts (~100 M\$/Year globally)
 - Regional SCRF infrastructure now coming up to speed
 - Successful completion of CesrTA (phase 1)
- Realistic site developments (siting)
 - Further detailed development of mountainous site (Japan)

AD&I: TLCC process underway

- development of cost-constrained baseline for the TDR cost estimate
- 1st BAW complete, proposals sent to Director
- 2nd BAW being planned

TDP-2 focus now on consolidating cost estimate

Global Mass-production of ~1700 cryomodules

On-Track for TDR in late 2012 ©

İİİ