Studies for a TPC in a CLIC Detector

Martin Killenberg

IWLC 2010 Geneva, 20. October 2010

- ∢ ⊒ →

 3

Martin Killenberg (CERN) Studies for a TPC in a CLIC Detector

A TPC at CLIC?

- Can a TPC resolve the tracks inside the narrow jets @ 3 TeV?
- TPC readout time \approx 60 µs, time of bunch train (BT) 150 ns \Rightarrow 1 BT in O(10) mm TPC drift
- What is the occupancy after 1 BT?
- Include backgrounds
 - muons parallel to beam axis
 - $\gamma\gamma \rightarrow hadrons$
 - e⁺e⁻ pairs from beamstrahlung
- Can a TPC provide time stamping?

Software Tools Overview

- **1** Simulation (deposition of charge/energy in the detector)
 - MOKKA / Geant4
 - Stand alone (MarlinTPC)
- Digitisation (calculation of the detector response)
 - Detailed digitisation chain in MarlinTPC
- **③** Reconstruction (finding the particles back from the detector response)
 - MarlinTPC
 - LEP-Tracking in MarlinReco
- Analysis
 - Marlin processors written for this study

-

< ∃ >

TPC simulation, digitisation, reconstruction and analysis toolkit developed by the LC-TPC collaboration.

• Main focus: Reconstruction of prototype data

What has to be improved for this	study?				
 Realistic simulation 	 Improve digitisation of raw data 				
• Handle two "half"	• Double hit / track separation				
TPCs	Helix fitting				
 Overlay events and background 	 Integration into full detector 				
 Debug and covify existing and 					

• Debug and verify existing code

Detector Simulation

- MOKKA (TPC driver with default settings)
 - One hit per pad row
 - + Can directly be translated to a reconstructed hits
 - Pad response not realistic for tracks with low angle
- MarlinTPC stand alone simulation:
 - Realistic cluster sizes and distances due to parameterised HEED and Magboltz data
 - Tracking is not done within Geant4
 - No full detector events
 - No particles from backscattering
 - No decays in the TPC
- MOKKA (TPC driver with low P_T settings)
 - Distance of step can be limited (default 1 mm)
 - Details of energy deposition not fully understood
 - Distance between hits is too large (often above 10 mm, Geant4 limitation in combination with energy cut)

Detector Simulation

- MOKKA (TPC driver with default settings)
 - One hit per pad row
 - + Can directly be translated to a reconstructed hits
 - Pad response not realistic for tracks with low angle
- MarlinTPC stand alone simulation:
 - Realistic cluster sizes and distances due to parameterised HEED and Magboltz data
 - Tracking is not done within Geant4
 - No full detector events
 - No particles from backscattering
 - No decays in the TPC
- MOKKA (TPC driver with low P_T settings) (\checkmark)
 - Distance of step can be limited (default 1 mm)
 - Details of energy deposition not fully understood
 - Distance between hits is too large (often above 10 mm, Geant4 limitation in combination with energy cut)
 - Set step limit to 200 μm
 - Set "low" P_T threshold to 3 TeV (everything is run in low P_T mode)
 - Is this suitable for full events?

5

Digitisation:

- Map of voxels (3D space buckets) resembles readout electronics
- Automatically implements event pile-up
- Background can be added
- + Output is realistic ADC raw data (lcio::TrackerRawData)

Reconstruction:

- Reconstruction chain developed with / for prototype data
- + Detailed and realistic, no MC information is used
- MC truth information of reconstructed tracks not available
- Only rudimentary track fitting

Idea:

- Use MarlinTPC up to hit level and LEPTracking for pattern recognition and fitting
- + Can be used in full detector events
- + MarlinTPC can do preselection to avoid problems with FORTRAN (too many hits per event)

The Second "Half TPC"

New in GEAR:

- Introduce a z position for each module
 - $\bullet \ z > 0 : \text{Positive side}$
 - $\bullet \ z < 0 : Negative \ side$
 - z = 0 : Prototype
- Extend TPCParameters::getNearestPad() and TPCParameters::getNearestModule() with z coordinate
 - Determine correct side from z coordinate
 - Run the 2D version on the modules of one side

Implicit assumption for full TPC (no z information given):

- GEAR end plate is on positive side
- Coordinates match with global coordinates
- \Rightarrow Pads as seen from the outside

The Second "Half TPC"

New in GEAR:

- Introduce a z position for each module
 - $\bullet \ z > 0 : \text{Positive side}$
 - $\bullet \ z < 0 : Negative \ side$
 - z = 0 : Prototype
- Extend TPCParameters::getNearestPad() and TPCParameters::getNearestModule() with z coordinate
 - Determine correct side from z coordinate
 - Run the 2D version on the modules of one side

Second, identical end plate:

- Rotated to face the other end plate
- \Rightarrow z and x coordinate are exchanged
 - Drift direction is along negative z axis
- \Rightarrow x coordinate has to be inverted by GEAR

Second "Half TPC" and the Prototype

Prototype:

- Anode position is at z = 0
- Z coordinate is proportional to drift distance
- Drift direction is in negative z direction
- \Rightarrow Prototype is negative "half TPC"

Problem:

 \bullet x coordinate will be inverted, not backward compatible

Solution:

- New feature is only activated if z coordinate is explicitly set (either in XML file or in the C++ code)
- Flag is only written to XML if it has been set before
- \Rightarrow Full backward compatibility
 - Feature is in the GEAR trunk, will be available with v00-15
 - Has to be integrated into MarlinTPC

< 30

▲ 同 ▶ → 三 ▶

Hit Splitter

For a better separation the signal distributions can be split:

• Hits from two tracks merge on the inner pad rows

Hit Splitter

For a better separation the signal distributions can be split:

• Hits from two tracks merge on the inner pad rows

Hit Splitter

For a better separation the signal distributions can be split:

- Hits from two tracks merge on the inner pad rows
- After hit splitting the tracks can well be separated

Analysis: Time Stamping with the TPC

- In the barrel time stamping only works in combination with an external silicon detector
- The TPC measures time since beginning of the bunch train

$$z = (t_{ ext{drift}} + BX \cdot \Delta t_{BX}) \cdot v_{ ext{drift}}$$

- The silicon sensor measures z directly, without timing information.
- From this the time stamp $BX \cdot \Delta t_{BX}$ is determined.

Details of the study

- Shoot muons from the vertex (MarlinTPC stand alone)
- Run full digitisation and reconstruction
- Shift the reconstructed track to a random event within the bunch train

Barrel region:

- Calculate intersection of reconstructed helix with silicon envelope
- Scatter the MC truth particle at the outer field cage
- Calculate intersection of scattered MC truth with silicon envelope tracker (SET)
- Smear SET hit with detector resolution
- Calculate time stamp and difference to MC truth
- Calculate the bunch crossing from the time stamp

End cap region (no results yet, work in progress):

- Scattering of MC truth in the end cap
- Compare with hits in end cap tracking discs

50 GeV muons, $\lambda = 50^{\circ}$ (corner of the TPC), 50 µm SET resolution

Parameters

- 3 dip angles: 5.71° (tan(λ) = 0.1), 30° , 50°
- 7 energies (2 200 GeV)
- 4 SET resolutions: 0 μm, 50 μm, 100 μm, 150 μm

Barrel Time Stamping

- Very weak dependency on particle energy
- Intrinsic TPC resolution $\mathcal{O}(1.2 \text{ ns})$
- With multiple scattering and realistic SET resolution < 1.5 ns

90 % of the muons are assigned correctly to within \pm 5 bunch crossings¹

$^{1}\text{Energy}$ 50 GeV, dip angle 5°,	SET resolution 50 µm	${\color{red}{\leftarrow}} \square {\color{black}{\rightarrow}}$	< 🗗 >	${\bf e}\equiv {\bf e}$	<≡>	E	୬୯୯
Martin Killenberg (CERN)	Studies for a TPC in a CLIC Detector						

Conclusion

Simulation:

- MOKKA driver in low P_T mode is currently being looked at
- MarlinTPC stand alone simulation does not cover full detector events

Digitisation: MarlinTPC

- Basic digitisation chain is ready and debugged
- Event and background overlaying not tested yet
- Work on second half TPC

Reconstruction: MarlinTPC + LEPTracking

- Basic chain up to Hit reconstruction is ready
- Interface to LEPTracking has to be created

Analysis:

- Time stamping
 - Barrel: better than 1.5 ns (SET 50 μm)
 - End cap: no results yet, work in progress