Review of e+ transport from capture to Pre Damping Ring

A. VIVOLI*

Thanks to:

L. RINOLFI (CERN)

R. CHEHAB (IPNL & LAL / IN2P3-CNRS)

O. DADOUN, F. POIRIER, P. LEPERCQ, A. VARIOLA (LAL / IN2P3-CNRS)

V. STRAKHOVENKO (BINP)

K. FLÖTTMANN (DESY)

* E-mail : Alessandro.Vivoli@cern.ch

- General scheme of the CLIC positron source
- Design and Simulation of the sections
- Pre-Damping Ring Acceptance
- Conclusions

CLIC Main Beam Injector Complex (2009)

Capture Results

S	N. e ⁺	Yield	γε_x	γε_y	<e></e>	σ _ε	σ _z	ε_z
cm		e⁺/e ⁻	π mm mrad	π mm mrad	Me∨	MeV	mm	π cm MeV
4204	4653	0.78	7395	7332	229.4	41.0	9.9	37.9

Capture Section (+ Bunch Compressor)

20/10/2010

Bunch Compressor Design

Bunch Compressor Elements

Quadrupoico.	Quad	rupole	s:
--------------	------	--------	----

- Number: N = 15
- Length: L = 40 cm
- Gradient: G = 0.6 2.9 T/m
- Aperture: r = 5-20 cm

Accelerating cavities:

- Number of cavities: N = 1 TW
- Length:
- Average Gradient: $E_z = 14.5 \text{ MV/m}$
- Frequency:

v = 2 GHz

L = 3 m

Bending Magnets:

- Number:
- Length:
- Magnetic Field:

N = 4L = 30 cm B = 0.584 T

Drift Spaces:	
 Number: Aperture: Length: 	N = 19 r = 5 cm L = 90-30 cm

MAGNETIC CHICANE

CLIC 2009, CERN

Bunch Compressor Results

S	N. e ⁺	Yield	γε_x	γε_y	<e></e>	σ _E	σ _z	ε_z
cm		e⁺/e ⁻	π mm mrad	π mm mrad	Me∨	MeV	mm	π cm MeV
5772	4411	0.74	7461	7583	221.2	17.7	7.3	12.9

20/10/2010

Injector Linac I (820 MeV)

From A. Ferrari et al., CLIC Note 626-655-723

20/10/2010

A. Vivoli, CLIC Positron Source, CLIC 2009, CERN

Injector Linac II (1.66 GeV)

Injector Linac III (2.82 GeV)

20/10/2010

A. Vivoli, CLIC Positron Source, CLIC 2009, CERN

Injector Linac Elements

Quadrupoles:

- Number: N = 192
- Length: L = 40 cm
- Gradient: G = 1.0 11.2 T/m
- Aperture: r = 5-20 cm

Accelerating structures:

• Nur	mber of cavities	: N = 47 TW

- Length: L = 3.90 m
- Average Gradient: $E_z = 14.5 \text{ MV/m}$
- Frequency:

v = 2 GHz

Drift Tubes:	
--------------	--

- Number: N = 50• Aperture: r = 5 cm
- Length: L = 200 280 cm

Pre-Damping Ring Acceptance

F. Antoniou

Horizontal Acceptance: $A_x = \gamma \beta \epsilon_x^{max} = 20 \gamma \beta \epsilon_x^{rms} = 20 * 0.007 mrad = 0.14 mrad$

20/10/2010

A. Vivoli, CLIC Positron Source, CLIC 2009, CERN

Pre-Damping Ring Acceptance

F. Antoniou

From particle tracking: $6\sigma_y^i \sim y^{max} = \sqrt{\beta_y \epsilon_y^{max}}$ $\epsilon_y^{max} = 36 \epsilon_y^{max}$

Vertical Acceptance: $A_y = \gamma \beta \epsilon_y^{max} = 36 \gamma \beta \epsilon_y^{rms} = 36 * 0.007 mrad = 0.252 mrad$

A. Vivoli, CLIC Positron Source, CLIC 2009, CERN

Injector Linac Results

S	N. e ⁺	Yield	γε_x	γε_y	≺E>	σ _E	σ _z	ε_z
cm		e⁺/e ⁻	π mm mrad	π mm mrad	MeV	MeV	mm	π cm MeV
4348	4204	0.70	7685	8105	2825.4	126.3	5.4	61.6

Final Results

Positrons inside PDR Acceptance: 2720. Final Accepted Yield: e+/e- =0.453.

Positrons required in PDR: 4.6-10⁹ e⁺.

Bunch population of primary electron beam on crystal: 4.6 $10^9/0.453 \approx 10.10^9 \text{ e}^{-1}$.

Peak Energy deposition density on amorphous target:

 $PEDD = 22.14*10 \ 10^9 \ / \ 7.5 \ 10^9 = 29.5 \ J/g \ < 35 \ J/g \ (Dadoun \ et \ al., \ CLIC \ Note \ 808)$

Conclusions

- Optimization of the capture section for non-polarized positrons is ongoing.
- New design to avoid possible issues to be done soon.
- Experimental tests of target survivability are desiderable.
- Configuration at 500 GeV and double charge possible with 2 fixed tungsten targets for the moment.
- Simulations with new capture results to be performed.

THANKS.

The End