

CLIC RF manipulation for positron at CLIC Scenarios studies on hybrid source

Freddy Poirier 12/08/2010

Compton

source

HB

source

Physique des accélérateurs

HB

- 2 m between crystal and target
- 10 mm target thickness
- Positron Bunch length at target exit= 500 μM

Present Studies

- Capture and acceleration using Travelling Wave (TW) tanks.
 - 84 accelerating cells tanks + 2 couplers i.e. long cavity
 - Prior studies have used Standing Wave (SW) 6 cells cavities (see talk of A.Vivoli)
- For Hybrid source (HB)
 - Scenarios with modification phase of first TW
 - Space charge limits
 - Additional Scenarios
 - Solenoid field (1T)
 - Cavity within AMD

2 GHz TW tanks

• 2 GHz

HB source

- 84 accelerating cells constitute the TW tanks
 - Note: 84 cells + 2 half cells for couplers within ASTRA
 - $2\pi/3$ operating mode
- 4.36 m long
- 15 MV/m
- Up to 5 tanks are used to accelerate e+ up to 200 MeV

First optimisation done on 15 mm iris (radius aperture) tanks but final results with 20 mm iris tanks

Capture Strategy

- Acceleration: Phase of the first tank tuned for use of maximum accelerating gradient for the first tank
 - 4 tanks are needed to reach ~200 MeV
- **Deceleration**: adapt the phase and gradient of the first tank to capture a maximum of positrons
 - 5 tanks are needed to reach ~200 MeV

Acceleration

Acceleration case at 18.12 m (to reach ~200MeV)

HB source

Transverse distribution ID Entries 2388 80 -0.9778E-04 Mean Population RMS 0.6270E-02 70 ւեսվը 60 50 40 30 20 10 -0.015 -0.01 -0.005 Π 0.005 0.01 0.015 acceleration X (m)

→2388 positrons

With cut at e_{min}=165 MeV

Total Efficiency_(200MeV,emin) 2388/6000= **0.398**

Deceleration

- First tank Phase = 280°
- Choice of gradient:

Values at 22.63 m (at ~200 MeV) More positrons in the higher tail but tail further in z

Gradient (MV/m)	Nb of positrons > 165 MeV	Nb of positrons > 185 MeV
7	3227	2832
6	3193	2929
	Eff=0.53	Eff=0.49
5	3147	2741

More positrons in lower tail but tail lower in energy

<u>At 200 MeV</u>

- For the deceleration case the efficiency* at 200 MeV is higher than for the acceleration case
- For further information: The value in red gives the number of positrons within the red dashed box *Eff 200 MeV: Nb of particles entering target/ Nb of particles at exit of tank with energy greater than 165 MeV

20 mm aperture

New 2 GHz cavity and field provided by P.Lepercq

HB: Acceleration scenario

Impact of space charge

HB

source

Impact of space charge

- Acceleration scenario:
 - The use of space charge imply -3.6% e+ at 200 MeV.
 - With the present e⁻ charge, we are at ~2.5 10² lower than a 10% effect
- Deceleration scenario:
 - The impact is -4.6%.
 - With the present e⁻ charge, we are at 10² lower than a 10% effect

The impact of space charge is here of the order of less than 5%

The difference from acceleration to deceleration is noticeable but the level is not detrimental in both case

Additional Studies on the capture with hybrid source

Physique des accélérateurs

- Additional scenario:
 - 1) An accelerating field within the Adiabatic Matching Device (AMD)
 - 2) Increase of the magnetic field surrounding the TW Accelerating section. Traditionally it is fixed at 0.5 T.

Additional Scenarios

- 2 scenarios studied:
 - Acceleration and deceleration
 - Very interesting scenario is deceleration
- Further optimisation (on lattice) for capture can be done
- No major impact from space charge foreseen in both scenarios
- Additional scenarios are also studied (booster within the AMD and higher solenoid field) which shows good potentials

Perspectives

- What about power consumption (TW/SW)?
 - The choice of TW/SW is not done yet. It will highly depends on the power consumption.
 - Though if TW are in use for acceleration between 200 MeV up to DR then it is an attractive choice.
 - Review of dimension should be done (2 GHz \rightarrow 1 GHz?)
- The results need to be sent to the bunch compressor and check the effective yield there

More Slides

Compton source **Compton Scenario** target e⁻ **e**⁺ Laser Pulse length=1.5 mm $\lambda_l = 1064 \text{ um}$ Laser pulse energy=0.1 J x 5 1.3 GeV e- σ_{ze} =600 μ m $\sigma_{z} = 600 \ \mu m$

 $\sigma_{zl} > \sigma_{ze}$ 2°

Compton source

Distributions at ~200 MeV

Acceleration case (18.12 m) Deceleration case (22.63 m) 220 215 3166 ENTRIES ENTRIES 4145 210 210 205 200 200 195 190 190 185 180 1255 e+ 180 2138 e+ 175 170 170 160 165 -0.0175-0.015 - 0.0125-0.01 -0.0075 -0.005 -0.0025 0 0.0025 0 0.00Z 0.004 0.006 0.008 -0.01 -0.008 - 0.006 - 0.004 - 0.0020.01160 Entries 4145 Entries 3166 100 -0.4937E-02 Mean -0.7865E-03 Mean 140 0.4755E-02 RMS 0.2773E-02 RMS 120 80 100 ᡙᡙ ᢕᠬᆀ╟ᡔᡢᡙᠾᡊ᠕ᡁ ᠊ᠴᢩᠳᢛ 60 80 60 40 40 20 20 Ο. 0 -0.01 0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.0 -0.0075 - 0.005 - 0.0025D 0.0025 deceleration This value is used for the efficiency 1.3 GeV, 5 IP calculation

Red box: $\delta e=10$ MeV, $\delta z=5$ mm

Impact of space charge

- The space charge is considered traditionally low because:
 - Large transverse size of the beam at exit of AMD
 - High enough energy (The positrons have an average energy > 5 MeV so quite relativistic)
 - Previous studies with Parmela simulation have shown an impact of space charge of the order of 1 % on the result
- Are we far from any effect due to Space charge?
 - What is the limit wrt to the charge of the bunch. i.e. if we increase the charge of the bunch at the exit of the AMD will there be a noticeable impact?
 - What happen to the space charge limit if we do deceleration?

The CLIC CDR yield hypothesis

We are simulating 6000 e⁻ (macro-particles), representing 10 10^9 e⁻ i.e. the charge per simulated particle is 2.7 10^{-4} nC.

PDR: Pre-Damping Ring