Flux concentrator for SuperKEKB

Kamitani Takuya

Luminosity trend

with antechambers

By courtesy of M. Masuzawa

Machine parameters

	KEKB (e+/e-) achieved	SuperKEKB (e+/e-) required
beam energy	3.5 GeV / 8.0 GeV	4.0 GeV / 7.0 GeV
stored current	1600 mA / 1200 mA	3600 mA / 2620 mA
beam lifetime	150 min / 200 min	10 min / 10 min
bunch charge	10 -> 1.0 nC / 1.0 nC	10 -> 4.0 nC / 5.0 nC
# of bunches	2 / 2 (∆t=96ns)	2 / 2 (∆t=96ns)
beam emittance ($\gamma \epsilon$)[1 σ]	2100 mm / 100 mm	10 mm / 20 mm
energy spread $\sigma_{\rm E}$ /E	0.125 % / 0.05 %	0.07 % / 0.08 %
bunch length σ _z	2.6 mm / 1.3 mm	0.8 mm / 1.3 mm

SuperKEKB requires

higher beam intensity & lower beam emittance

Injector Upgrade

Positron source in the KEKB linac

Positron source (cut model)

air-core pulse coil

QWT system

KEKB e+ generator Solenoidal field profile

Positron intensity upgrade

 stronger focusing solenoid (adiabatic matching device)

[two candidates]

- A) FLux Concentrator (FLC) ← this talk
- B) Superconducting solenoid
- 2. larger transverse acceptance with larger aperture accelerating structures

[two candidates]

- A) L-band structure (f=1298MHz, 2a_{min}=35mm)
- B) larger-aperture S-band structure (2a_{min}=30mm)

Collaboration with BINP

- BINP has been working on R&D of flux concentrator for the VEPP5 linac and for Linear colliders.
- BINP suggested a possibility to use flat-face type of flux concentrator for the KEKB injector linac.
- 3. KEK and BINP started a collaboration on flux concentrator from 2004.

flat-face FLC developed at BINP

FLC prototype

FLC prototype

Installed in a vacuum chamber

Modified vacuum chamber was fabricated at BINP to fit for KEKB linac.

operation test at BINP

Test result at BINP before shipping to KEK

- 1. Operation test has been performed for two weeks in September, 2010.
- 2. In first 5 days, field strength was raised from 5 T to 8 T. Later, operation has been performed at 8.5 to 9.0 T. (I_{pulse}=29 kA at 9 T)
- 3. 6 to 8 hours operation in a day (only in daytime) at 50 Hz repetition
- 4. No breakdowns in the FLC magnet and no problems in the power supply for two weeks.

transverse field component

- 1. non-axially symmetric eddy currents generate strong transverse field component
- 2. transverse kick by that component gives significant beam loss in the magnet
- 3. tracking simulation with the transverse component is necessary for realistic positron yield estimation.

Field mapping system at KEK

- Field mapping system
 with a pickup coil on a
 3D(x,y,z) movable stage
 has been developed.
- 2. Test measurement for a spare air-core pulse coil was successful.

arrived at KEK

The prototype FLC and the pulse power supply have just arrived at KEK.

Schedule

- 1. 2010.Oct -> Nov
 - re-assembling the power supply, the FLC magnet and HV cables
 - field mapping measurement (longitudinal & transverse components)
- 2. 2010.Dec -> 2011.Jan
 - stand-alone operation test for a reliablity check
- 3. 2011.Feb -> Mar
 - installation into KEKB linac positron source by replacing the existing air-core pulse coil
 - beam study of positron generation

Summary

- KEK & BINP are collaborating on flux concentrator R&D for upgrade of KEKB injector linac positron source
- Short-term operation test has been successfully performed at BINP with a full-power prototype FLC.
- The prototype FLC and the power supply have been sent to KEK.
 [arrived today!]
- After re-assembling the power supply and magnet, field mapping measurement will be performed to get a detailed information of the transverse component.
- Long term operation test and positron generation beam study will be performed at KEK.
- With the results of these test and study, performance comparison with superconducting solenoid will be done for final decision of matching device for SuperKEKB.