Japanese cavities: results, status, and future

T. Omori (KEK) 20-Oct-2010 IWLC2010 (ILC-CLIC WS) at Genéve

Introduction

► Polarized e+ by laser Compton Scheme

Toward the positron sources

-> increase intensity of gamma rays

Staking Laser Pulses in Optical Cavity

Miyoshi PosiPol2010

Increase power of laser beam at interaction point for increasing gamma yield.

enhancement with optical cavity

Two Prototype Cavities

2-mirror cavity

(Hiroshima / Weseda / Kyoto / IHEP / KEK)

4-mirror cavity
(Inspired by French Activity)

moderate enhancement moderate spot size simple control

demonstration of γ ray gen. accum. exp. w/ cavity and acc.

high enhancement small spot size complicated control

intense γ ray generation

STATUS OF THE 2 MIRROR CAVITY

Experimental Apparatus: Two Mirror Cavity

Experimental R/D in ATF

Hiroshima-Waseda-Kyoto-IHEP-KEK

Put it in ATF ring

Experimental Apparatus Miyoshi PosiPol2010

Progress of the Exp. w 2M Cavity

2007/2008 Install Cavity (Enhance x250)
 Spot size 30 micron (σ), not locked on resonance γ-ray generation

H.Shimizu et al., JPSJ, 78 (2009) 074501

improve feedback system

2008/2009 Enhance x250, success locked on resonance
 500 W in cavity, γ-ray generation

Shuhei Miyoshi et al., NIM, A623 (2010) pp.576-578

Higher Reflectivity Mirror improve feedback system

2008/2009 Enhance x760, success locked on resonance
 1.5 kW in cavity, γ-ray generation

We are here.

Result of the Experiment in 2010

Miyoshi PosiPol2010

Enhancement factor tripled (250 -> 760), accumulated power increased from 500W to 1.48kW.

10.9 gamma-rays / train are detected with single bunch operation (I~2.2mA).

Progress of the Exp. w 2M Cavity

2008/2009 Enhance x760, success locked on resonance
 1.5 kW in cavity, γ-ray generation

We are here.

Next step

bunch by bunch observation <--- Next</pre>

New Gamma-ray Detector

Bunch-by-bunch data taking is planed in Oct-Dec/2010.
 We will use a Oscilloscope for data taking.

New fast DAQ is planned by LAL team.

STATUS OF THE 4 MIRROR CAVITY

Inspired by French Activities.

Many knowledges were/are transferred from French team.

We should go to 3D 4 mirror ring cavity to get small sport size

2 mirror cavity is not stable for small spot size

2d 4M has astigmatism

3D (or twisted) 4M ring cavity

We should go to 3D 4 mirror ring cavity to get small sport size

2 mirror cavity is not stable for small spot size

2d 4M has astigmatism

3D (or twisted) 4M ring cavity

4 MIRROR CAVITY

Prototype Cavity

Test Bench Cavity

4 MIRROR CAVITY

Prototype Cavity

Test Bench Cavity

4 MIRROR CAVITY

Prototype Cavity

Test Bench Cavity

- All parts are specially designed.
- Less adjustable. Aimed to be much simpler than French Cavity.
- Get experiences to design a vacuum compatible cavity.

- Assembled by commercially available parts (mostly).
- More adjustable.
- More open structure. We can measure position of mirrors by 3D measuring machine.
- Test the theoretical model.

3D Measuring Machine

FaroArm

Measure 3D position in 100 micron accuracy.

In order to make comparison with the theoretical model calculations, to reduce ambiguity in geometry is important.

Geometry of the Test Bench Cavity

L1=M1-M2=420mm M2-M4=100mm L2=M2-M3=420mm M1-M3=100mm L3=M3-M4=420mm L4=M4-M1=420mm

We made theoretical model

Transfer matrix of a single roundtrip

$$M = D(L3/2) \cdot R(\alpha 3) \cdot F(f_t, f_s) \cdot D(L2) \cdot R(\alpha 2) \cdot D(L1) \cdot R(\alpha 1)$$
$$\cdot D(L4) \cdot R(\alpha 4) \cdot F(f_t, f_s) \cdot D(L3/2)$$

Drift space

Concave mirror

$$D(L) = \begin{pmatrix} 1 & 0 & L & 0 \\ 0 & 1 & 0 & L \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad F(f_1, f_2) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1/f_1 & 0 & 1 & 0 \\ 0 & -1/f_2 & 0 & 1 \end{pmatrix}$$

Rotation

$$R(\alpha) = \begin{vmatrix} \cos \alpha & \sin \alpha & 0 & 0 \\ -\sin \alpha & \cos \alpha & 0 & 0 \\ 0 & 0 & \cos \alpha & \sin \alpha \\ 0 & 0 & -\sin \alpha & \cos \alpha \end{vmatrix}$$

Property of 4M Cavity

Measurement at outside

Profile of the transmitted light

Comparison: Measurement & Model Calculations

$$\delta = (L3-R)/2$$

L3 is distance between concave mirrors.

R is the curvature. $R = 422.8 \pm 0.3$ mm

We got good agreement.

Optimization by using the theoretical model An example: Choice of twist angle

New Design

L1=M1-M2=420mm L2=M2-M3=420mm L3=M3-M4=420mm L4=M4-M1=420mm M2-M4=70mm M1-M3=70mm

Experience from the Prototype Cavity

- Gimbal mount is preferable.
 (The prototype employed kinematic mount.)
- Easy to see the mirror surface is preferable.

Designing the real Cavity

Designing the real Cavity

Gimbal mount

Designing the real Cavity

Schedule of 4M cavity

- Designing is on going.
- Fabrication will be finished by the end of March 2010.
- Designing of the vacuum chamber is also on going.
- We will install the "Japanese" 4M cavity in ATF at summer 2011. The "Japanese" 4M cavity and the "French" 4M cavity will play complementary roll in our entire study plan.

SUMMARY

Summary

Two Activities

- 2-mirror cavity
- 4-mirror cavity

Inspired by French Activities.

Many knowledges were/are transferred from French team.

2-mirror cavity

- Enhancement upgrade: x250 --> x760
 Stored Power in Cavity: 500 W --> 1.48 kW
- Almost Ready to take Bunch-by-Bunch Data

4-mirror cavity

- Test bench cavity and comparison with theory.
- Prototype cavity experience.
- Real cavity design is on going with vacuum chamber.
- We will install the cavity into ATF summer 2011.

Backups

L1=M1-M2=420mm L2=M2-M3=420mm

L3=M3-M4=420mm

L4=M4-M1=420mm

M2-M4=100mm M1-M3=100mm

Transfer matrix of a single roundtrip

$$M = D(L3/2) \cdot R(\alpha 3) \cdot F(f_t, f_s) \cdot D(L2) \cdot R(\alpha 2) \cdot D(L1) \cdot R(\alpha 1)$$
$$\cdot D(L4) \cdot R(\alpha 4) \cdot F(f_t, f_s) \cdot D(L3/2)$$

Drift space

Concave mirror

$$D(L) = \begin{vmatrix} 1 & 0 & L & 0 \\ 0 & 1 & 0 & L \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} \quad F(f_1, f_2) = \begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1/f_1 & 0 & 1 & 0 \\ 0 & -1/f_2 & 0 & 1 \end{vmatrix} \quad \text{plane M1}$$

Rotation

$$R(\alpha) = \begin{vmatrix} \cos \alpha & \sin \alpha & 0 & 0 \\ -\sin \alpha & \cos \alpha & 0 & 0 \\ 0 & 0 & \cos \alpha & \sin \alpha \\ 0 & 0 & -\sin \alpha & \cos \alpha \end{vmatrix}$$

$$\cos \alpha_{12} = \hat{a_1} \cdot \hat{a_2}$$

 α 12 is the image rotation. α 12 = 1.58517 rad by testbench configuration.

Profile of the transmitted light

Horizontal position(2 σ)[mm]

We measured the transmitted power at outside 0.4m from cavity.

$$\delta = (L3-R)/2$$

L3 is distance between concave mirrors.

R is the curvature. $R = 422.8 \pm 0.3$ mm

at the center of concave mirrors

L1=M1-M2=420mm L2=M2-M3=420mm L3=M3-M4=420mm L4=M4-M1=420mm

M2-M4=70mm M1-M3=70mm

Optical Cavity for Laser-Compton

Higher laser power

 L_{cav} = n $\lambda/2$, ΔL <nm laser for pulse stacking ->more enhancement the more precision

 $\Delta T < ps$

Laser should be focused for high power density Accommodate laser cavity in the accelerator

at ALCPG09

3D 4M cavity resonates with left and right circular polarizaton separately

This is due to geometric phase since light travels twisted path

but situation was more complicated

Result as of 2008 (Reported TILC09)

27 gamma ray / crossing

Next step

more power enhancement

bunch by bunch observation

AFTER TILC09

- One of the Mirror was replaced with the higher reflectivity one
 - -99.6% -> 99.9%
 - power enhancement
 - 250 -> ~750

- 99.6% 99.6 --> 99.9%
- more precise controll required (~0.1nm)
- Status of the cavity w/ new mirror
 - -now in ATF DR
 - -got 3 times more photons

More enhancement More precise control

- ► (99.64%, 99.64%) to (99.64%, 99.94%)
- ▶enhancement: 250 to 760

Witdh of resonant peak got down to 0.35nm from 0.60nm

More precise(~faster) control of cavity

cavity length [nm]

Feed back system in 2008

Control:

Laser to keep resonance

Cavity for timing synchronization

Keeping resonance at 250 enhacement with timing jitter ~2ps

Initial performance with 760 enhancement

Faster feed back to laser to keep resonance

Larger fluctuation of laser timing

timing control could not follow

New feedback system

New feedback control + improve emvironmet

Timing jitter is now < 2ps

W/ Larger enhansment cavity in 2009

After, extensive studies;

Power enhancement of the cavity ~ factor 3

Laser power 500W to 1.48kW_ADC_Och

 \triangleright 26.8 γ /train10cunches(6.7mA)

The electron beam was not tuned enough in 2009

demonstration of 3 times more g by beam tuning bunch by bunch observation soon

Result of the Experiment in 2010

Miyoshi PosiPol2010

Enhancement factor tripled (250 -> 760), accumulated power increased from 500W to 1.48kW.

10.9 gamma-rays / train are detected with single bunch operation (I~2.2mA).

4 MIRROR CAVITY

to get higher enhancement and smaller beam waist

A prototype 3D4M cavity

