Building a Higher Voltage Polarized e-Source: The CEBAF 200kV Inverted Gun

<u>M. Poelker</u>, P. Adderley, M. BastaniNejad, J. Clark, J. Grames, J. Hansknecht, C. Hernandez-Garcia, J. McCarter, M. Stutzman, R. Suleiman, K. Surles-Law

Jefferson Lab

IWLC2010 workshop - October 20, 2010

Benefit of Higher Gun Bias Voltage

- Reduce space-charge-induced emittance growth, maintain small transverse beam profile and short bunchlength
 - In other words, make a "stiff" beam right from the gun
 - Particularly important for high bunch charge beam
- CEBAF guns have always operated at 100kV (β = 0.55)
- Expect better transmission for Qweak at 140kV (and ILC Baseline design) (β = 0.62)
- Later, we envision an improved CEBAF photoinjector with a 200kV gun and SRF capture section ($\beta = 0.69$)
- Indentify what it takes to reach 350kV bias voltage or higher (β = 0.8+). For ILC, CLIC, EIC, etc.,

Jefferson Lab

Biggest obstacle: Field emission and HV breakdown... which lead to Photocathode Death

Benchmarking PARMELA Simulation Results Against Beam-Based Measurements at CEBAF/Jefferson Lab – work of Ashwini Jayaprakash, JLab

Message: Beam quality, including transmission, improves at higher gun voltage

Jef

SA

Cornell 750 kV Gun

Jefferson Lab

- Ceramic with bulk resistivity and improved braze design installed
- Measured resistivity of 6.45 x 10¹⁰ Ohm-cm gives 30 μA current draw at 500 kV
- Ceramic by Morgan, brazing and welding by Kyocera

Similar initiatives at JLab FEL and Daresbury ERLP

Courtesy Bruce Dunham, Cornell

Old Gun Design

"Inverted" Gun

Jefferson Lab High gradient locations not related to beam optics, lots of metal to polish

ILC-funded Project

- Inverted Gun#1 installed at CEBAF, operational since July 23, 2009
- Extractor gauge 2x10⁻¹² Torr (raw value)
- 100kV Lifetime ~ 70C at 150uA avg. current
- Conditioned to 150kV, operated at 130kV since September 2010
- Inverted Gun#2 at Test Cave
- Conditioned to 225kV, with large grain Nb electrode
- InvGun2 performs well at 140kV
- Problematic ops at 200kV. Small field emission (~nA) and occasional vacuum bursts that ruin QE
- Preparing for "plan B"

Jefferson Lab

Charge Lifetime vs Bias Voltage

2mA avg. current (unpolarized, DC beam), 350um laser spot and 5mm active area

Field Emission measured at (floating) anode versus Gun Bias Voltage

Anode won't always capture all FE.... Better to look for x-rays....

And maybe even higher gradient at the joint....??

HV breakdown in capacitors with delamination gap

🍘 📢

"High Voltage Engineering: Fundamentals", Kuffel, Zaengl, Kuffel

Why Niobium?

easier than diamond-paste-polish

Conventional geometry: cathode electrode mounted on metal support structure

Jefferson Lab

Replace conventional ceramic insulator with "Inverted" insulator: no SF6 and no HV breakdown outside chamber

Work of Ken Surles-Law, Jefferson Lab

Single Crystal Nb: Good Cathode Electrode Material

No field emission at 225kV bias and 20mm gap

Backup Slides

Jefferson Lap

Min: 0

From AI Dudas and Mike Neubauer, Muons Inc.

Figure 10. "Ball" type gun electrode with a side support for the inverted ceramic calculated for 250 kV. The maximum gradient was 8 MV/m and but the region around the ceramic is not shielded from the max gradient.

JLab FEL 500kV inverted gun

- Condition to 600kV, operate at 500kV
- 3x bigger inverted insulator compared to CEBAF gun
- One insulator for HV: one for cooling
- Niobium electrode no diamond paste polishing
- Work in-progress

Jefferson Lab

Courtesy: M. Marchlick, G. Biallis, C. Hernandez-Garcia, D. Bullard,

P. Evtushenko, F. Hannon, and others from JLab-FEL

InvGun2: Lifetime at 2mA and 100kV bias: Versus Laser Position and Active Area

Improve Lifetime with Higher Bias Voltage?

Field Emission – Most Important Issue

- Previous measurements with flat electrodes, small gaps and low voltage - not very useful
- Want to keep gun dimensions about the same – suggests our 200kV gun needs "quiet" electrodes to 10MV/m

Jerrerson Lab

Stainless Steel and Diamond-Paste Polishing Good to ~ 5MV/m and 100kV.

Work of Ken Surles-Law, Jefferson