

from Sunday, October 21, 2012 at **08:00** to Friday, October 26, 2012 at **18:00** (America/Chicago) at **University Center, UTA**

ILC DRAFT CONSTRUCTION SCHEDULE Flat topography & Mountainous sites

K Foraz & M Gastal

Many thanks to all contributors

Objectives and scope

- → To provide a consolidated project construction schedule
 - → For flat topography sites (Americas, Europe)
 - → European site primarily used for flat topography
 - → Mountainous region site (Asia)
 - → Focus on the critical path
 - → From excavation to commissioning of the facilities
- → To integrate many data sources
 - → ARUP studies for IR
 - → Granada 2011 workshop
 - → Draft ILC PIP (Project Implementation Planning)
 - → Commissioning priorities
 - → Output of KILC2012
- → To present the TDR section on Project Construction Schedule
 - → Many parameters can be tuned and affect this draft scenarios
 - → Tolerance to co-activity, number of teams deployed...

Schedule Format – Flat Topography (FT)

→ To follow work progress in time and space

Distances (to scale)

~ 30km martin.gastal@cern.ch

Schedule Format – Mountainous Region (MR)

→ To follow work progress in time and space

~ 30km martin.gastal@cern.ch

Schedule Format

→ To follow work progress in time and space

Schedule Format

→ To follow work progress in time and space

Only for IR, BDS, ML & RTML

Time line

In years

Schedule Format

→To follow work progress in time and space

Strategic aspects for FT sites

- → Result of the ARUP/J Osborne studies recommends minimising stress concentration on the IP by excavating and finishing the interaction cavern before tackling the tunnels and service caverns
- → TBMs launched from adjacent shafts (PM7) and extracted from an IR shaft
 - → Allows time for finishing of IR cavern
- → Similar recommendations were made for CLIC IR
- → Compatible with 3 shaft IR layouts

Strategic aspects for FT sites

- → The BDS tunnel and part of the main linac have a diameter of 8m
 - → To minimise cost and speed up excavation
- → The rest of the main linac consists of 5.2m diameter tunnel

- → TBMs cannot be refurbished to accommodate both tunnel sizes
- → 2 different machines have to be used
- → We are now looking at a 4 TBM scenario in DBS, ML, RTML (2x5.2 + 2x8)

Strategic aspects

- → Requests for early commissioning will set priorities for the delivery of parts of the ILC complex
- → When designing the construction schedule, an attempt was made to deliver some components as early as possible:
 - → Damping Rings
 - → PLTR
 - → BDS & ML up to PM7/AH1
- → An attempt to design a detailed schedule of the commissioning period will be shown

Progress Rates Summary

Activity in Main Linac	Region	Progress rates in m/week	For x Shifts
Tunneling using 8m Ø	FT	100	3
TBM	MR	na	
Tunneling using 5.2m	FT	150	3
or 6m Ø TBM	MR	<u>na</u>	
Tunneling using 6-8m	FT	30	3
Ø road header	MR (NATM)	20	3
Concreting, invert and	FT	50	3
tunnel finishing	MR	Concrete lining 25	3
		Invert, drainage 45	
Ventilation ceiling	FT (Europe only)	50	3
ducts installation	MR	<u>na</u>	
Survey and set out of	All	120	1
components supports			
Electrics General	All	120	1
Services			
Piping and ventilation	All	120	1
Cabling	All	120	1
Installation of supports	All	250	1
for machine			
components			
Installation of machine components	All	100	1

Year 1 – Construction kick-off

- → FT Excavation of 7 shafts in parallel
 - → IR: PXO, PXAO, PXBO
 - → ML: PM+7, PM-7
 - → DR: PMA0, PMB0
 - → 1 year per shaft

- → MR Excavation of 9 access tunnels
 - → AH1, AH2, AH3, AH4, IP

- → Launch construction of detector assembly halls on the surface
- → Launch construction of service buildings

Year 1 – FT vs MR

→ Launch of works

- → Site setup is not included, t₀ is ground breaking
- → FT: Not all access shafts to the underground facilities are started together
- → FT: 7 excavation crews in action over 4 sites
- → MR: Quick deployment of resources to excavate all access tunnels
- → MR: 9 excavation crews in action over 9 sites

Year 2 – Tunneling FT

- → Tunneling has to start in various parts of the facility (5 TBMs)
 - → Shafts excavation of PM8,9,10,11,12,13
 - → Shaft based caverns have to be excavated (IR cavern, US-7, US+7, USB0)
 - → Two 8m diameter TBMs: ML + BDS
 - → Two 5.2m diameter TBMs: ML
 - → One 5.2m diameter TBM: DR

- → Progress rates for European site:
 - → 8m: 100m/w (3 shifts)
 - → 5.2m: 150m/w (3 shifts)

Year 2 – Tunneling MR

- → Tunneling has to start in various parts of the facility
 - → 8 Access halls have to be excavated (AH-4, AH-3, AH-2, AH-1, AH+1, AH+2, AH+3, AH+4)
 - → 14 tunneling crews are sent from access tunnels AH-3, AH-2, AH-1, AH+1, AH+2, AH+3
 - → Excavation of IR Cavern started
 - → Start concrete lining in sectors IP-AH-1 and IP-AH+1

- → Progress rates:
 - → Tunneling: 20m/week

Year 2 – FT vs MR

- → Tunneling effort is intensive in the Asian region
 - → Construction of 14 tunnels in parallel
- → During Year 2 the Flat topography regions would be still providing access to the underground worksite by excavating shafts
- → The Asian worksite looks a lot more labor intensive with 8 access halls excavation proceeding in parallel with the IP cavern excavation

Year 3 – Tunneling, finishing, ceiling ducts

- → Tunneling will proceed in BDS, ML and DR
 - → Spoil to be evacuated through PM8

→ Invert concreting and tunnel finishing will start as soon as spoil

- → Ceiling ducts for fire safety purposes
 - → Progress rate: 50m/d for 3 shifts

Spoil Management - FT

→ Work in a tunnel section, e.g. T-8, can only start once the conveyor belt evacuating the spoil produced by the TBM is redirected to the nearest shaft

Year 3 – Tunneling, and concrete lining MR

- → Excavation of IP cavern
- → Tunneling will proceed in all 14 tunnels sections
- → Concrete lining to follow
 - → Progress rate: 25m/week
 - → Spoil to be carefully managed once concrete lining starts in the same tunnel section

Year 3 – FT vs MR

- → Thanks to a higher progress rate the tunneling in the FT site is catching up with the MR.
- → Spoil management will be a critical challenge

Year 4 – End of CE, infrastructure installation FT

- → End of CE phase
 - → BDS: Q2; ML: Q4; RTML: Q4
- → Start of infrastructure installation
 - → Survey and set out of components supports
 - → Electrics General Services
 - → Piping and ventilation
 - → Cabling

Progress rate 120m/w for 1 shift

Courtesy of BE-ABP-SU

Year 4 – End of tunneling in Main Linac, finishing MR

- → End of tunneling phase in Beam Tunnel and BDS Tunnel
- → Tunneling to proceed in BDS service tunnel
- → Concrete lining to proceed in Beam Tunnel
- → Invert and drainage work to start
 - → Progress rate: 45m/week

Year 4 – FT vs MR

- → The civil engineering work reaches completion during Year 4 in the flat topography site
- → Due to slower tunneling progress rates the MR civil engineering work will need one more year to reach completion
- → Year 5 for MR is dominated by the construction of the Shielding Wall
 - → Progress rate: 45m/week
- → Milestones: Civil engineering work complete
 - → FT: Y4 Q4
 - → MR: Y5 Q1

Year 5 6 7 8— Getting ready for machine components installation FT

→ Installation of infrastructure

- → Survey and set out of components supports
- → Electrics General services
- → Piping and ventilation
- → Cabling

Progress rate 120m/w for 1 shift

→ Impact of the number of teams deployed is significant

→ Baseline: 2 teams

→ Option: 4 teams

Year 6 7 8— Getting ready for machine components installation MR

→ Installation of infrastructure

- → Survey and set out of components supports
- → Electrics General services
- → Piping and ventilation
- → Cabling

Progress rate 120m/w for 1 shift

→ 4 teams deployed

- → In the Asian schedule, teams from different activities are allowed to work in one same sector ex in e-BDS between electrical teams and piping teams
- → Having shielding wall make this possible

Year 5 6 7 8- FT vs MR

- → Progress rates used for the Installation of infrastructure are the same for both regions
 - → Survey and set out of components supports
 - → Electrics General services
 - → Piping and ventilation
 - → Cabling
- → Allowing multiple types of activities in a same tunnel section allows the MR schedule to catch up slightly with the FT one
- → Milestones: Installation of infrastructure complete

→ FT: Y7 Q3

→ MR: Y8 Q1

→ Milestone: Installation of machine components in BDS started

→ FT: Y6 Q1

→ MR: Y7 Q2

Year 7 8 9 10– Installing machine components

- → Installation of supports for machine components
 - → Progress rate: 250m/w for 1 shift
- → Installation of machine components
 - → Transport
 - → Interconnections
 - → Alignment
 - → Progress rate: 100m/w for 1 shift (Average value from LHC)
- → 2 teams for each activity for FT; 4 teams for each activity for MR

Construction schedule – FT vs MR

- → The Asian site schedule is a lot more labor intensive
- → The faster rate of TBMs allows for a faster completion of the civil engineering work in the FT schedule
 - → Spoil management to be studied carefully
- → Building the shielding wall takes an entire year in the MR schedule
- → The installation of infrastructure is slightly faster in the MR region thanks to the deployment of more teams and greater tolerance to coactivity
- → Allowing the installation of the machine components to be carried out by 4 teams allows the MR schedule to catch up with the FT schedule
- → Milestone: Ready for early commissioning (BDS and ML up to PM7/AH1)
 - → FT: Y7 Q2
 - → MR: Y8 Q2
- → Milestone: Ready for Full commissioning (whole accelerator available)
 - → FT: Y10 Q1
 - → MR: Y10 Q1
- → Milestone: ILC ready for beam
 - → FT: Y10 Q4
 - → MR: Y10 Q4 (commissioning program to be fine tuned)

Considerations of the high-tech mass production schedule

- Light blue: Pre-production or pre-industrialization stage (or preparation for full production)

- Yellow: Full production of material and components/parts.

- Orange: Full assembly stage and test stage in parallel.

Installation of machine components - FT

consideration of the high-tech mass production schedule

Considerations of the high-tech mass production schedule

48

- → The Asian region schedule allows for a longer production time of the accelerator parts
- →Next step: come up with a production schedule compatible with an installation schedule, ex for CLIC shown below

Commissioning

- → Early Commissioning : Draft program (Ewan):
 - → The e- injector system to 5 GeV and dump : 3 Months
 - → The e+ source and systems to 5 GeV and dump utilizing the auxiliary low current e- source to produce e+ : 3 Months
 - → Hardware commissioning of injection lines and both Damping rings : 3 months
 - → Commission both rings with beams from injectors with extraction only into first dump in the PLTR (beam still in injection/extraction tunnels): 9 months
- → Requires the availability of:
 - → BDS and ML up to PM7/AH1 (FT: Y7 Q2)
 - → PLTR
 - → Damping Rings
- → Draft schedule for the construction and installation of the DR+PLTR FT only
 - → DR: One 6m diameter, 3240m long tunnel excavation using TBM at a rate of 150m/w for 3 shifts
 - → PLTR: Two 6-8m diameter, 270m long tunnels excavation using road headers at a rate of 30m/w for 3 shifts
 - → When possible, the RD and PLTR are treated as one 3780m tunnel

Early Commissioning – FT only

→ CE phase

→ Invert and finishing: 250m/w

→ Ceiling ducts: 250m/w

→ Installation of infrastructure in DR and PLTR

→ Survey: 120m/w 120m/w

→ Electrics: 80m/w 120m/w

→ Piping & ventilation: 80m/w 120m/w

→ Cabling: 80m/w 120m/w

→ Installation of machine components

→ Supports: 250m/w

→ Machine elements: DR: 50m/w; PLTR: 100m/w

→ Many more components per meter to install in DR martin.gastal@cern.ch

Delivery of DR and PLTR for commissioning FT only

ID	Task Name	Duration		2020		2022		2024		2026		2028		2030		2032
			Qtr 1	Qtr 1 Q	(tr 1	Qtr 1	Qtr 1	Qtr 1	Qtr 1	Qtr 1	Qtr 1	Qtr 1	Qtr 1	Qtr 1	Qtr 1	Qtr 1
1	DR and PLTR construction	1850.5 days		-						-	₽					
2	Excavate PMA0 and PMBo	52 wks	01/01	E	xcava	ate PMA	0 and I	МВо								
3	Excavate DR caverns	40 wks		30/12		Excavat	e DR ca	verns								
4	Setup TBM	15 wks		30/12 🅌	Setu	ір ТВМ										
5	Excavate DR	21.6 wks		14/04	_	xcavate										
6	Excavate PLTR	18 wks		10/05	■	xcavate										
7	Invert and finishing for DR and PLTR	15 wks		13/0	19 퐅	Invert	and fin	ishing fo	r DR a	nd PLTR						
8	Install ceiling partitions (DR PLTR)	15 wks		27	/12	Insta	all ceilir	g partitio	ons (D	R PLTR)						
9	Survey + supports setout	31.5 wks		:	11/0	1	Survey	+ suppor	rts set	out						
10	Electrics	45 wks			1	l6/11 🖥		lectrics								
11	Piping and ventilation	45 wks				27	7/09 퐅	Pip	ing an	d ventil	ation					
12	Cabling	45 wks					07	/08 🍆	Ca	bling						
13	Supports installation	15 wks						18/0	6 🍆	Supports	s install	ation				
14	Machine installation	70 wks						01,	/10 🎽		Mach	ine inst	allation			
15	DR and PLTR ready for commissioning	0 days								4	03/0	2				
16	BDS ready for commissioning	0 days									♦ 01/	04				
17	e- injector system to 5GeV and dump	13 wks								01/04	e-	njector	system	to 5Ge	∕ and d	ump
18	e+ source and systems to 5GeV and dump	13 wks									_			tems to		
19	Hardware commissioning of injection lines and DR	13 wks								01/04	Ha_Ha			ssioning	-	
20	Commissioning with beam of DR	39 wks								01/0	07	Com	missior	ing with	beam	of DR
21	Early commissioning complete	0 days										30/0	03			

- → Under our set of assumptions, the DR and PLTR would be made available to commissioning before the BDS becomes available (Y7Q1 vs Y7Q2)
- → Early commissioning complete- FT:Y8 Q2
- → It has been assumed that the same approach could be used for the MR sites

Global Commissioning

- → Still quite early to come up with precise estimates
- → Based on LHC:
 - → 6 month of pre-commissioning per sector
 - → 12 months of global commissioning
- → Key dates
 - → Ready for Early Commissioning- FT: Y7Q2; MR: Y8Q2
 - → Ready for Global Commissioning- FT:Y9Q4; MR:Y9Q4
- → Pre-requisite to launch commissioning with beam IF detectors not available
 - → Temporary vacuum pipe through IR area
 - → Temporary QD0
 - → Temporary shielding

Conclusions

- → This draft schedules shows how the ILC could be built and commissioned in less than 10 years
- → Many additional studies will be necessary to finalise the work plans
- → New iteration would be necessary if layouts are modified
- → Consolidated scheduling studies for the construction and installation of the detectors in both FT and RM regions can be found in the TDR chapter

Milestone	Flat topography	Mountainous region
Civil Engineering work	Y4, Q4	Y5, Q1
complete		
Common Facilities installed	Y7, Q3	Y8, Q2
Accelerator ready for early	Y7, Q2	Y8, Q2
commissioning (BDS and		
ML up to PM7/AH1)		
ILC ready for full	Y9, Q4	Y9, Q4
commissioning (whole		
accelerator available)		
ILC ready for beam	Y10, Q4	Y10, Q4
Caverns ready for beneficial	Y7, Q1	
occupancy		
Detector ready to be	Y7, Q1	
lowered		
Detector ready for	Y8, Q3	
commissioning with beam		