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Introduction: Polarimetry at the ILC

• Two laser Compton polarimeters per beam in the beam
delivery system (BDS)

150 m~1 650 m

upstream 
polarimeter IP

downstream 
polarimeter

• Polarimeters measure with 0.25 % systematic uncertainty
(goal)

• What happens between polarimeter and IP?

• In addition: calibration with average polarization from
collision data (up to 0.1 %)

• Must understand spin diffusion/depolarization to 0.1 %
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Introduction: Simulation Framework

UP IP DP
Particle / spin tracking along the BDS      Bmad

Beam-beam collision
GP++/CAIN

Data analysis     ROOT

Polarimeter simulation
LCPolMC

Polarimeter simulation
LCPolMC

UP/DP: up-/downstream polarimeter

Framework could be used with different input also for other
machines, e. g. CLIC
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Introduction: Principles of Spin Propagation

• Spin propagation in electromagnetic fields
is described by T-BMT equation (semi-
classical)

• Approximation (~B⊥ only) for illustration:
spin precession

θspin =
(

g−2
2 · E

m + 1
)

︸ ︷︷ ︸
≈568

·θorbit B

• Polarization vector ~P =

Px

Py

Pz

 with polarization
∣∣∣~P∣∣∣
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Introduction: ILC Beam Delivery System

Latest available beamline design (SB2009 Nov10 lattice)
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Spin Propagation through BDS (Idealized Lattice)

distance s along BDS [m]
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UP/DP: up-/downstream polarimeter

• 1000 runs with random bunches, 10 000 sim. particles each

• Drawn: median ± 1σ

• Perfect magnet alignment, no collision effects
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Spin Fan-Out

distance s along BDS [m]
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Only minor spin fan-out in quadrupoles
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Collision Effects

Simulation of Collision Effects (GP++):

• T-BMT precession: deflection from colliding bunch
(∼ 10−4 rad)

• Sokolov-Ternov: spin flip by emission of beamstrahlung
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Collision Effects: Energy Loss

• Energy loss by beamstrahlung:
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• Spin precession ∝ E
⇒ Spin fan-out due to energy spread
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Collision Effects: Energy Loss vs. Laser-Spot

• Laser-spot size at Compton IP only ∼ 0.1 − 1 mm

• chicane ⇒ dispersion (black: reference particle)

• Without collision: 0.124 % beam energy spread
Entire beam within laser-spot X
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Collision Effects: Energy Loss vs. Laser-Spot

• Laser-spot size at Compton IP only ∼ 0.1 − 1 mm

• chicane ⇒ dispersion (black: reference particle)

• After collision: Off-energy particles evade laser-spot

• Downstream polarimeter needs detailed investigation
(energy and polarization correlated!)
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Collision Effects: Spin Propagation

• Collisions, but still perfect alignment

• Crossing angle 14 mrad, bunches crabbed

distance s along BDS [m]
3400 3450 3500 3550

z
lo

n
g

. p
o

la
ri

za
ti

o
n

 P

0.77

0.78

0.79

0.8

]
-3

re
la

ti
ve

 c
h

an
g

e 
[1

0

-40

-30

-20

-10

0

IP DP

-e

no collision
lumi-weighted
after collision
measurable

• Much stronger spin fan-out

• Polarization within 0.1 mm laser-spot different: “measureable”
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Collision Effects: Spin Propagation

0 10 20 30

z
lo

n
g

it
u

d
in

al
 p

o
la

ri
za

ti
o

n
 P

0.77

0.78

0.79

0.8

]
-3

re
la

ti
ve

 c
h

an
g

e 
[1

0

-40

-30

-20

-10

0
no coll. full lumi

UP
IP before collision
IP lumi-weighted
IP after collision
DP
DP measurable
(r=0.1, 0.2, 0.5, 1 mm)

Moritz Beckmann (DESY) LCWS Oct 25, 2012 13/ 17



Collision Effects: Spin Propagation

0 10 20 30

z
lo

n
g

it
u

d
in

al
 p

o
la

ri
za

ti
o

n
 P

0.77

0.78

0.79

0.8

]
-3

re
la

ti
ve

 c
h

an
g

e 
[1

0

-40

-30

-20

-10

0
no coll. full lumi

UP
IP before collision
IP lumi-weighted
IP after collision
DP
DP measurable
(r=0.1, 0.2, 0.5, 1 mm)

 2.5%≈

 0.3%≈

• What does the measurement tell us about the
polarization at the IP?? ∆Pz ∼ 2.5 %

• Can we trust the simulation to calculate back?
More details to come: detector magnets, misalignments

• Uncertainty in DP laser-spot size/position
⇒ ∆Pz = O(0.1 %)
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Collision Effects: Spin Propagation
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Low luminosity sample (switched off bunch crabbing):

• Collision effects and also their consequences reduced

• Downstream measurement less affected by collision effects
and less dependent on laser-spot size/position
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Conclusion

• A spin tracking framework for high energy linear colliders
including collision effects has been set up

• ILC: understanding of polarization to permille-level required

• Precision goals for upstream measurement seem achievable

• Downstream polarimeter struggles fiercely with collision
effects:

• High-precision simulation including all effects required at
high luminosities to obtain polarization at IP from data

• Measurement highly sensitive to size/position of laser-spot
• Idea: determine lumi-weighted polarization rather/also from

upstream polarimeter and luminosity measurement?

• Downstream polarimeter needed nevertheless:
• Measure depolarization without collision effects / calibrate UP
• Measure additional depolarization at low luminosities to test

simulations
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Thanks for your attention!

Thanks for support and useful discussions to:

• David Sagan (Cornell U.)

• Deepa Angal-Kalinin (Daresbury Lab.)

• Anthony Hartin, Mathias Vogt, Nick Walker (DESY)

• Andrei Seryi (JAI)

• Kenneth Moffeit, Yuri Nosochkov, Michael Woods (SLAC)

• Jeff Smith (formerly SLAC)

• und many others...
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Backup slides
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Compton Polarimeters: Principles

• Compton scattering with polarized laser:
∼ 1500 electrons per bunch

• Measure energy spectrum of scattered electrons

• Energy distribution → spatial distribution

• Cherenkov gas detector counts electrons per channel
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Compton Polarimeters: Principles
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• σCompton depends on polarization (laser × beam)
• Measure asymmetry and compare to analyzing power

(predicted asymmetry for 100 % polarization)
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Compton Polarimeters: Systematic Errors

Goal: relative systematic error on measurement < 0.25 %
(SLC polarimeter: 0.5 %)

• Detector linearity: contribution of ∼ 0.1− 0.2 % (goal)
Prototype tests ongoing . . .

• Laser polarization: ∼ 0.1 % X

• Analyzing power: ∼ 0.1 % (UP: X, DP: ?)
• Detector alignment: can be determined from data (X)

0.5 mm precision sufficient
• Alignment of magnets negligible compared to detector X

Field inhomogeneities? to be investigated
• Disrupted electron beam at downstream polarimeter:

• Dependence on laser-spot size and position: ??
• Beam energy spread no concern for small laser-spot sizes

thanks to dispersion X
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Misalignments

• Every element is shifted/rotated randomly in/about all
directions/axes

• Gaussian-distributed random numbers, σ = 10 µm/µrad

• Static and time-dependent misalignments

• Simplified orbit correction with kicker magnets and fast
feedback at IP
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Misalignments: Correction with Kicker Magnets

BPM kicker magnetbeam

design orbit

• ∼ 40 kicker magnets and many more Beam Position Monitors
spread over BDS

• Calculate required kicks from measurements (SVD)

• Automatic correction of spin alignment as well?
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Misalignments: Orbit Correction Strategy

Strategy here:

• Interested in effects of kicks on polarization,
not in sophisticated correction algorithm

• Get orbit corrected somehow with kickers such that
• beam does no go lost
• approximations (small coordinates) still hold

• Fake correction at IP: shift and rotate bunch coordinates to
0.1σ precision (goal), adjust beam size
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Misalignments: Spin Propagation

• Misalignments reduce luminosity ⇒ less collision effects

• Measured polarization depends on laser-spot size and position
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Collision Effects: Energy Loss vs. Laser-Spot

• Laser-spot size at Compton IP only ∼ 100µm − 1 mm

• chicane ⇒ dispersion (black: reference particle)

• After collision, bunch crabbing switched off
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Collision Effects: Spin Propagation (Polarization)

• Total polarization affected likewise

• Polarization decrease in chicanes: fan-out due to energy
spread
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Collision Effects: Spin Propagation (Positron Beam)
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Collision & Misalignments: Downstream Polarimeter
Measurement
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Luminosity

• Design values 1.8(1.5) · 1038 m−2s−1 (without waist shift)

• Need to improve tuning of grid parameters in GP++

• Does not change statement of this talk (effects might just
get stronger for higher luminosities)
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Polarization correction by angle measurement?

• Detector solenoid and anti-DID
• θr : angular spread within bunch
• Solenoid field invalidates “B⊥ only” approximation
• Still sharp value for b (ϑpol = b · ϑbunch) due to ideal

conditions (no misalignments)
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Polarization correction by angle measurement?

• This plot without detector magnets
• Small misalignments (2µm / 2µrad) make correction for

incident angle impossible, since there is no more simple
correlation between angles of bunch and polarization vector

• “Steps” due to correction kickers with zero length
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Polarization

• Here: longitudinal polarization Pz

(along beam axis)

• Pz = pR − pL ∈ [−1,+1]

• Beam with 90% R (and thus 10% L)
→ 80% longitudinal polarization

• More general: polarization vector

~P =

Px

Py

Pz

 with polarization
∣∣∣~P∣∣∣
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