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Introduction: Polarimetry at the ILC

e Two laser Compton polarimeters per beam in the beam
delivery system (BDS)

upstr_eam downstream
polarimeter P polarimeter

~1650 m

e Polarimeters measure with 0.25 % systematic uncertainty
(goal)
e What happens between polarimeter and IP?
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Introduction: Polarimetry at the ILC

e Two laser Compton polarimeters per beam in the beam
delivery system (BDS)

upstr_eam downstream
polarimeter P polarimeter

~1650 m

e Polarimeters measure with 0.25 % systematic uncertainty

(goal)
e What happens between polarimeter and IP?

e |n addition: calibration with average polarization from
collision data (up to 0.1 %)

e Must understand spin diffusion/depolarization to 0.1 %
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Introduction: Simulation Framework

Particle / spin tracking along the BDS  Bmad
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Polarimeter simulation Beam-beam collision | | Polarimeter simulation
LCPolMC GP++/CAIN LCPolMC
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Data analysis

ROOT

UP/DP: up-/downstream polarimeter

Framework could be used with different input also for other

machines, e. g. CLIC
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Introduction: Principles of Spin Propagation

e Spin propagation in electromagnetic fields
is described by T-BMT equation (semi-
classical)

e Approximation (§J_ only) for illustration:
spin precession

ospin = (gT = oF 1) orbit
%,_/
~568

BO
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Introduction: Principles of Spin Propagation

e Spin propagation in electromagnetic fields
is described by T-BMT equation (semi-
classical)

e Approximation (§J_ only) for illustration:
spin precession
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e Polarization vector P = | P, | with polarization ‘P‘
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Introduction: ILC Beam Delivery System
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Spin Propagation through BDS (ldealized Lattice)
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UP/DP: up-/downstream polarimeter

e 1000 runs with random bunches, 10000 sim. particles each
e Drawn: median + 1o
e Perfect magnet alignment, no collision effects
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Spin Fan-Out
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Only minor spin fan-out in quadrupoles
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Collision Effects

Simulation of Collision Effects (GP++):

e T-BMT precession: deflection from colliding bunch
(~107* rad)

e Sokolov-Ternov: spin flip by emission of beamstrahlung

ANVTVINA
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Collision Effects: Energy Loss

e Energy loss by beamstrahlung:
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e Spin precession o< E
= Spin fan-out due to energy spread
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Collision Effects: Energy Loss vs. Laser-Spot

e Laser-spot size at Compton IP only ~ 0.1 — 1 mm
e chicane = dispersion (black: reference particle)

e Without collision: 0.124 % beam energy spread
Entire beam within laser-spot v

no collision

vertical particle position y [mm]

n 1 n n n n n n n n 1 n
249 250 251
particle energy [GeV]
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Collision Effects: E Loss vs. Laser-Spot

e Laser-spot size at Compton IP only ~ 0.1 — 1 mm
e chicane = dispersion (black: reference particle)
o After collision: Off-energy particles evade laser-spot

e Downstream polarimeter needs detailed investigation
(energy and polarization correlated!)

after collisio

vertical particle position y [mm]

2%0
particle energy [GeV]
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Collision Effects: Spin Propagation

e Collisions, but still perfect alignment

e Crossing angle 14 mrad, bunches crabbed
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e Much stronger spin fan-out

e Polarization within 0.1 mm laser-spot different: “measureable”
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Collision Effects: Spin Propagation
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Collision Effects: Spin Propagation
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e What does the measurement tell us about the
polarization at the IP?? AP, ~ 2.5%

e Can we trust the simulation to calculate back?
More details to come: detector magnets, misalignments

e Uncertainty in DP laser-spot size/position
= AP, = 0(0.1%)
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Collision Effects: Spin Propagation
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Low luminosity sample (switched off bunch crabbing):
e Collision effects and also their consequences reduced

e Downstream measurement less affected by collision effects
and less dependent on laser-spot size/position
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Conclusion

e A spin tracking framework for high energy linear colliders
including collision effects has been set up

e |LC: understanding of polarization to permille-level required

e Precision goals for upstream measurement seem achievable
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Conclusion

e A spin tracking framework for high energy linear colliders
including collision effects has been set up

e |LC: understanding of polarization to permille-level required

e Precision goals for upstream measurement seem achievable

e Downstream polarimeter struggles fiercely with collision
effects:
e High-precision simulation including all effects required at
high luminosities to obtain polarization at IP from data
e Measurement highly sensitive to size/position of laser-spot
o Idea: determine lumi-weighted polarization rather/also from
upstream polarimeter and luminosity measurement?
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Conclusion

e A spin tracking framework for high energy linear colliders
including collision effects has been set up

e |LC: understanding of polarization to permille-level required

e Precision goals for upstream measurement seem achievable

e Downstream polarimeter struggles fiercely with collision
effects:
e High-precision simulation including all effects required at
high luminosities to obtain polarization at IP from data
e Measurement highly sensitive to size/position of laser-spot
o Idea: determine lumi-weighted polarization rather/also from
upstream polarimeter and luminosity measurement?

e Downstream polarimeter needed nevertheless:

e Measure depolarization without collision effects / calibrate UP
e Measure additional depolarization at low luminosities to test
simulations
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Thanks for your attention!

Thanks for support and useful discussions to:

David Sagan (Cornell U.)

Deepa Angal-Kalinin (Daresbury Lab.)

Anthony Hartin, Mathias Vogt, Nick Walker (DESY)
Andrei Seryi (JAI)

Kenneth Moffeit, Yuri Nosochkov, Michael Woods (SLAC)
Jeff Smith (formerly SLAC)

und many others...
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Backup slides

Moritz Beckmann (DESY) LCWS Oct 25, 2012 18/ 17



Compton Polarimeters: Principles

Compton scattering with polarized laser:
~ 1500 electrons per bunch

e Measure energy spectrum of scattered electrons

Energy distribution — spatial distribution

Cherenkov gas detector counts electrons per channel

Magnetic Chicane Dipole 2 «— g m-»| Dipole 3
<—8.1m—»« 16.1m - : 16.1m <—8.1m—>]
Dipole 1 Dipole 4
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Rty H S Detector
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etle — 125 GeV.
~~ 50 GeV.
g 1
2 N 25 GeV.
3 i

total length: 74.6 m
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Compton Polarimeters: Principles
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* Ocompton depends on polarization (laser x beam)
e Measure asymmetry and compare to analyzing power
(predicted asymmetry for 100 % polarization)
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Compton Polarimeters: Systematic Errors

Goal: relative systematic error on measurement < 0.25%
(SLC polarimeter: 0.5 %)

e Detector linearity: contribution of ~ 0.1 — 0.2 % (goal)
Prototype tests ongoing . ..

e Laser polarization: ~ 0.1% v
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Compton Polarimeters: Systematic Errors

Goal: relative systematic error on measurement < 0.25%
(SLC polarimeter: 0.5 %)

e Detector linearity: contribution of ~ 0.1 — 0.2 % (goal)
Prototype tests ongoing . ..

e Laser polarization: ~ 0.1% v
e Analyzing power: ~ 0.1% (UP: v/, DP: ?)
e Detector alignment: can be determined from data (v')
0.5 mm precision sufficient
e Alignment of magnets negligible compared to detector v/
Field inhomogeneities?
e Disrupted electron beam at downstream polarimeter:
e Dependence on laser-spot size and position: 77
e Beam energy spread no concern for small laser-spot sizes
thanks to dispersion v/
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Misalignments

e Every element is shifted/rotated randomly in/about all
directions/axes
e Gaussian-distributed random numbers, o = 10 um/urad

e Static and time-dependent misalignments
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Misalignments

Every element is shifted /rotated randomly in/about all
directions/axes

Gaussian-distributed random numbers, o = 10 um/urad

Static and time-dependent misalignments

Simplified orbit correction with kicker magnets and fast
feedback at IP
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Misalignments: Correction with Kicker Magnets

BPM bea\m kicke/r magnet
A

design orbit

e ~ 40 kicker magnets and many more Beam Position Monitors
spread over BDS

e Calculate required kicks from measurements (SVD)

e Automatic correction of spin alignment as well?
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Misalignments: Orbit Correction Strategy

Strategy here:
o Interested in effects of kicks on polarization,
not in sophisticated correction algorithm
e Get orbit corrected somehow with kickers such that

e beam does no go lost
e approximations (small coordinates) still hold
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Misalignments: Orbit Correction Strategy

Strategy here:
o Interested in effects of kicks on polarization,
not in sophisticated correction algorithm
e Get orbit corrected somehow with kickers such that
e beam does no go lost
e approximations (small coordinates) still hold
e Fake correction at IP: shift and rotate bunch coordinates to
0.1 0 precision (goal), adjust beam size

m
®
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Misalignments: Spin Propagation

e Misalignments reduce luminosity = less collision effects

e Measured polarization depends on laser-spot size and position

z

longitudinal polarization P
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Collision Effi

Loss vs. Laser-Spot

e Laser-spot size at Compton IP only ~ 100 gm — 1 mm

e chicane = dispersion (black: reference particle)

e After collision, bunch crabbing switched off
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Collision Effects: Spin Propagation (Polarization)

e Total polarization affected likewise

e Polarization decrease in chicanes: fan-out due to energy
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Collision Effects: Spin Propagation (Positron Beam)
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Collision & Misalignments: Downstream Polarimeter

Measurement

vertical particle position y [mm]

255 200 ' 250
particle energy [GeV]
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e Design values 1.8(1.5) - 103 m—2s~! (without waist shift)
e Need to improve tuning of grid parameters in GP++

¢ Does not change statement of this talk (effects might just
get stronger for higher luminosities)
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Polarization correction by angle measurement?

Detector solenoid and anti-DID

0,: angular spread within bunch

Solenoid field invalidates “B; only” approximation
Still sharp value for b (901 = b - Upunch) due to ideal
conditions (no misalignments)
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Polarization correction by angle

e This plot without detector magnets

e Small misalignments (2um / 2urad) make correction for
incident angle impossible, since there is no more simple
correlation between angles of bunch and polarization vector

e “Steps’ due to correction kickers with zero length

T T

60= . . —
9 e, solenoid P
i - entrance -
= 40*7éé8bunch —
) r ]
> [ =b ]
c —
[

v —
et T O R .

o
X

—5000E= T T T T

i

distance to IP [m]

Moritz Beckmann (DESY) LCWS Oct 25, 2012 32/ 17



Polarization

R

e Here: longitudinal polarization P,
(along beam axis)
spin
e P,=pr—pLE [_1a+1]
e Beam with 90% R (and thus 10% L) direction of motion

— 80% longitudinal polarization

spin L

e More general: polarization vector

Px
P = | P, | with polarization ‘P‘
P,

direction of motion
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