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Introduction

lons generated by beam-gas ionization
lons are trapped along the electron-bunch train;

The ions created by the head of the bunch train perturb the
bunches that follow.

Occur inrings, linacs or beam transport lines;
Broad-band spectrum

Normally only in vertical direction due to the small vertical
beam size
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Electron Bunch train lons



Observations-Beam Size Blow-up

L The instability has been observed at many laboratories when vacuum is not good
» Artificially increasing the vacuum pressure (ALS, PLS, ATF)
» At commissioing times or restart after a long shutdown (ESRF, DIAMOND,...)
» After installation of new (insertion device) chambers (SPring-8, ESRF, ...)
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Sideband Diff (V)

Observations---Coupled bunch instability
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FIl at SSRF with nominal vacuum

(Bocheng Jiang, et. al. NIMA 614,201 O)

Single bunch train with bunch Number 450, 37.5% gap (0.54ps)

Beam current: 200mA
Vertical emiittance: 27.3pm
Horizontal emittance 3.9nm

Table 1
Main parameters of the SSRF storage ring.

Beam energy (GeV) 35
Circumference (m) 432
Harmonic number 720
MNatural emittance (nm rad) 39
Transverse coupling 0.7%
Beam current (mA) = 200
Betatron tunes Q. /(Q, 22.22(11.
Synchrotron tune Qs 7.2 » 107
Momentum compaction 427 =10
Matural chromaticity &, /&, 55.7/
Relative energy spread 97 % 107
RF frequency (MHz) 499 654
Damping times T, /T, /T; (Ms) 7.35/7.36

number {data taken from the bunch-by-bunch BPM).
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Fig. 1. The relative oscillation amplitude of bunch centroid versus the bunch



FI@SPEAR3

Small vertical oscillation (~10 um) has been observed when a single bunch
train beam filling pattern is used
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Main Parameters of SPEAR3 and the
ILC DTCO02 damping Ring

Physics Symbol/Unit SPEAR3 ILCDTC
damping ring
Beam Energy E, [GeV] 3 5
Circumference C [m] 234 3238.76
Horizontal Emittance g, [nm] 10 0.637
Vertical Emittance g, [pm] 14 2
Beam Current | [mA] 200-500 389/779
Bunch Number M 280 1312/2625
Harmonic Number h 372 7022
Bunch Spacing ns 2.1 6.2/3.1
RF Frequency for [MHZ] 476.315 650
Revolution Frequency f, [MHZz] 1.280 0.09
Tune n./n,/n. |14.1/6.18/0.01 | 48.36/27.22/ 0.03
Momentum Compaction Factor a 1.6x103 3.36x104
Energy Spread o, 9.8x104 1.0x103
Bunch Length o; [mm] 6 6
Radiation Damping Time ./t /t, [ms]| 4.0/5.3/3.2 22/22/11
Total Vacuum Pressure P [nTorr] 0.1~0.5 0.5




Beam filing patterns of ILC DTCO02 damping ring

Parameter KCS DRFS FP upgrade
Energy[GeV] 5.0 5.0 5.0
Circumference[m] 3238.76 3238.76 3238.76
Emittance ¢,/e, [pm] 637/2 637/2 637/2
Harmonic number 7022 7022 7022
Number of bunches 1312 1312 2625
Beam current[mA] 389 389 779
Bunch spacing [Agg] 4 4 2
Beam Filling period 19 14 29
Fill pattern (1period)

Train [bunch number] 34 22 44
Gap [in Age] 45 33 31
Train [bunch number] 34 22 45
Gap [in Agg] 49 33 31
Train [bunch number] 22
Gap [in Axe] 33
23
33
Bunch length[mm] 6 6 6
Energy spread, o; 1x103 1x103 1x103
Mom. compaction, o 3.36 x 10 3.36 x10% | 3.36x10*
Tunes. v /v /v 48.36 /27.22 | 48.36/27.22 | 48.36/27.22
XY /0.03 /0.03 /0.03
Damp times t, /1, /1, [ms] 22122111 22 /22111 | 22/22/11
E loss/turn, U, [MeV] 4.87 4.87 4.87
RF voltage, Vge [MV] 12.83 12.83 12.83




Summary of beam-ion instability, Theory

UFII (single bunch train with long gap) @(
(1) Quasi-exponential growth (linear force) ‘\

(T. O. Raubenheimer and Frank Zimmermann, PREQO%7 1995)
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Growth rate is proportional to the ion density arid'Q of the wake!!




Our method: Wake function

» The nonlinear space charge force is included.The Q of the wake
represents the nonlinearity of the E-force.Typically, it is below 10.

»> The wake has good linearity when the bunch offset is smaller than the
beam size where the fastest instability occurs
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Effects of Optics & multiple gas species

» Beam size varies along the ring, this frequency spread due to optics
provide damping to the instability. How to accurately model it?

» There are multiple gas species in the real vacuum. Does the
superposition rule apply?

: RiGA Information Recall - [14G-RGA2 300mA 140G-1G-TSP4= 1,2e- 10TH0D030408 1542 : Analogi]
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Wake and impedance with arbitrary
Optics and Vacuum

The total wake function of ions along the whole ring
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A is the mass number of ion; so the wake is ion species dependent.
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Impedance of ion cloud

Impedance provides a rich source of information:

Easy to know the contributions from individual gas species and also
from ions at different location along the accelerator.

Instability growth rate is directly related to impedance(next page)
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Impedance of ion cloud in ILC DR with KCS configuration.The total pressure is 0.5nTorr.
The partial pressure is 48%, 5%, 16%,14% and 17% for H2, CH4, H20O, CO and CO2 gas,

respectively.



Growth rate (1/sec)

Analysis Beam ion instability in ILC DR

When the beam is evenly filled along the ring, the coherent frequency shift for

mode number y is N Mrc
Q,—w,=-I ZZ ((PM +v, + ) ay,)
2)/TO 5 b
Damping effect of H2 ion on the most unstable modes
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The unstable modes driven by various types of ions for the ILC KCS (Left) and FP
upgrade (right) configuration.The total vacuum pressure is 0.5 nTorr




Simulation of Fll in ILC DR

Simulation is done with PIC code (L.Wang, et. al. PRSTAB 14,084401,201I)

The simulation is expensive ,>100 CPU hrs

The fastest exponential growth times for the three configurations shown
in Table are 0.61 ms, 0.91 ms and 0.40 ms, respectively. Again the
simulations agree with our analyses (0.89ms, |.2ms, 0.7ms)
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Fll at ILC DR with DCT04

The optics of DCT is recently updated.There is a smaller vertical emittance of
|.2pm in DCTO04 design compared with 2pm as in DCTO02.Therefore the
growth time becomes shorter: they are 0.59ms, 0.80ms and 0.29 ms for KCS,
DRFS and FP upgrade beam, respectively (SLAC-PUB-15268)
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Beam filling patter effect@SPEAR3

Multiple bunch train can mitigate the beam ion
instability with high intensity beam by reducing

the ion density (Theory and simulation, see L.
Wang, et. al. PRSTAB 14, 084401, 201 1)
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Mitigation with Chromaticity
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Chromaticity effect

Chromaticity is more effective for machines with low
momentum compaction factor; small ring and long bunch
length 1
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damping ring. The vertical axis is the normalized growth rate



Comparison of the damping effect of nonlinear
space charge force and beam optics

In SPEAR3, the two damping effects are similar
In ILC, beam optics provides stronger damping
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Summary

* We analyze the multi-bunch train beam ion instabilities
with arbitrary beam optics, multi-gas species vacuum,
nonlinear space charge force and realistic beam filling
pattern together. All these factors provide damping to
the instability.

e Our analyses agree well with expensive simulation, and
the observations in SPEARS3.

* |t is critical to use multiple gas species....

e Both beam optics and nonlinear space charge provide
strong damping effect to the instability;

* A large chromaticity can mitigate the instability at the
expense of reduced lifetime
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