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Introduction 

 Ions generated by beam-gas ionization 

 Ions are trapped along the electron-bunch train;  

 The ions created by the head of the bunch train perturb the 
bunches that follow. 

 Occur in rings, linacs or beam transport lines; 

 Broad-band spectrum 

 Normally only in vertical direction due to the small vertical 
beam size 
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Observations-Beam Size Blow-up 

C. J. Bocchetta, et. al. 1994 

ELETTRA 

The instability has been observed at many laboratories when vacuum is not good 

 Artificially increasing the vacuum pressure (ALS, PLS, ATF) 

 At commissioing times or restart after a long shutdown (ESRF, DIAMOND,…) 

 After installation of new (insertion device) chambers (SPring-8, ESRF, …) 

 

 

KEK ATF 
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Observations---Coupled bunch instability 

ALS 

ALS 

y~30m 

Dual sweep streak camera image of a bunch train 

(M. Kwon et al., Phys. Rev. E57 (1998) 6016) 

(J. Byrd et al., PRL, 79 (1997) 79) 

Beam spectrum at different beam current 
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FII at SSRF with nominal vacuum 

(Bocheng Jiang, et. al. NIMA 614, 2010) 
Single bunch train with bunch Number 450, 37.5% gap (0.54s) 

Beam current: 200mA 

Vertical emiittance: 27.3pm 

Horizontal emittance  3.9nm 
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FII@SPEAR3 
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Beam spectrum at 200 mA with a 

single bunch train filling pattern 
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Measured vertical amplitude along  

the bunch train (200mA) 

Small vertical oscillation (~10 µm) has been observed when a single bunch 

train beam filling pattern is used 



Main Parameters of SPEAR3 and the 

ILC DTC02 damping Ring 
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Physics Symbol/Unit SPEAR3 ILC DTC 

damping ring 

Beam Energy E0 [GeV] 3 5 

Circumference C  [m] 234 3238.76 

Horizontal Emittance x [nm] 10 0.637 

Vertical  Emittance y [pm] 14 2 

Beam Current I  [mA] 200-500 389/779 

Bunch Number M 280 1312/2625 

Harmonic Number h 372 7022 

Bunch Spacing ns 2.1 6.2/3.1 

RF Frequency fRF [MHz] 476.315 650 

Revolution Frequency f0   [MHz] 1.280 0.09 

Tune nx / ny / ns 14.1/6.18/0.01 48.36/27.22/ 0.03 

Momentum Compaction Factor  1.610-3 3.3610-4 

Energy Spread e 9.810-4 1.010-3 

Bunch Length l  [mm] 6 6 

Radiation Damping Time x /y /z  [ms] 4.0/5.3/3.2 22/22/11 

Total Vacuum Pressure P [nTorr] 0.1~0.5 0.5 



Parameter KCS DRFS FP upgrade 

Energy[GeV] 5.0 5.0 5.0 

Circumference[m] 3238.76 3238.76 3238.76 

Emittance x/y [pm] 637/2 637/2 637/2 

Harmonic number 7022 7022 7022 

Number of bunches 1312 1312 2625 

Beam current[mA] 389 389 779 

Bunch spacing [RF] 4 4 2 

Beam Filling period 19 14 29 

Fill pattern (1period) 

Train [bunch number] 34 22 44 

Gap [in RF] 45 33 31 

Train [bunch number] 34 22 45 

Gap [in RF] 49 33 31 

Train [bunch number] 22 

Gap [in RF] 33 

23 

33 

Bunch length[mm]  6 6 6 

Energy spread, d 1 x 10-3 1 x 10-3 1 x 10-3 

Mom. compaction,  3.36 x 10-4 3.36 x 10-4 3.36 x 10-4 

Tunes, nx / ny / ns  
48.36 /27.22 

/0.03 

48.36/27.22

/ 0.03 

48.36/27.22 

 /0.03 

Damp times x /y /s [ms] 22 / 22 / 11 22 / 22 / 11 22 / 22 / 11 

E loss/turn, U0 [MeV] 4.87 4.87 4.87 

RF voltage, VRF [MV] 12.83 12.83 12.83 
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Beam filing patterns of ILC DTC02 damping ring 



Summary of beam-ion instability Theory 

Growth rate is proportional to the ion density and Q of the wake!! 

FII (single bunch train with long gap) 

(Gennady Stupakov, KEK Proceedings 96-6) 
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(E. Kim and K. Ohmi, Japanese Journal of Applied Physics 48 (2009) 086501) 

Exponential growth (includes nonlinear space charge force) 

(L. Wang, et. al. PRSTAB 14, 084401, 2011) 

(only when time is small?) 



Our method: Wake function 
 The nonlinear space charge force is included. The Q of the wake 

represents the nonlinearity of the E-force. Typically, it is below 10. 

 The wake has good linearity when the bunch offset is smaller than the 

beam size where the fastest instability occurs 

E-field of ion cloud 

L. Wang 11 

0 10 20 30 40 50 60 70
-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

10000

Z   (m)

W
y
 (

m
-2

)

Numerical Method

Analytical Method

Comparison with analysis 

)sin(
)(

1

3

4
)( 2

c

s
e

c
sW iQc

s

xyye

ii

i











 (L. Wang, et. al. PRSTAB 14, 084401, 2011) 

 



Effects of Optics & multiple gas species 
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Ion frequency along the ILC damping 

ring with the KCS beam 

 Beam size varies along the ring, this frequency spread due to optics 

provide damping to the instability. How to accurately model it? 

 There are multiple gas species in the real vacuum. Does the 

superposition rule apply? 



Wake and impedance with arbitrary 

Optics and Vacuum 
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A is the mass number of ion; so the wake is ion species dependent. 
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Impedance of ion cloud 
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Impedance provides a rich source of information: 

Easy to know the contributions from individual gas species and also 

from  ions at different location along the accelerator.  

Instability growth rate is directly related to impedance(next page) 

Impedance of ion cloud in ILC DR with KCS configuration. The total pressure is 0.5nTorr.  

The partial pressure is 48%, 5%, 16%,14% and 17% for H2, CH4, H2O, CO and CO2 gas,  

respectively. 



Analysis Beam ion instability in ILC DR 
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The unstable modes driven by various types of ions for the ILC KCS (Left) and FP 

upgrade (right) configuration. The total vacuum pressure is 0.5 nTorr 

KCS 

FP upgrade 
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Simulation of FII in ILC DR 
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(b)

Simulated vertical beam ion instability in the ILC damping ring with KCS configuration: 

3D plot (a) and 2D plot (b) of the growth of vertical amplitude; growth of unstable 

modes(c) Total pressure 0.5nTorr 

The fastest exponential growth times for the three configurations shown 

in Table  are 0.61 ms, 0.91 ms and 0.40 ms, respectively.  Again the 

simulations agree with our analyses (0.89ms, 1.2ms, 0.7ms) 

Simulation is done with PIC code (L. Wang, et. al. PRSTAB 14, 084401, 2011) 

The simulation is expensive , >100 CPU hrs 



FII at ILC DR with DCT04 
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Simulated vertical beam ion instability with DCT04 lattice for various 

beam configurations 

The optics of DCT is recently updated. There is a smaller vertical emittance of 

1.2pm in DCT04 design compared with 2pm as in DCT02. Therefore the 

growth time becomes shorter: they are 0.59ms, 0.80ms and 0.29 ms for KCS, 

DRFS and FP upgrade beam, respectively   (SLAC-PUB-15268) 



Beam filling patter effect@SPEAR3 
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Observation 

Multiple bunch train can mitigate the beam ion 

instability with high intensity beam by reducing 

the ion density (Theory and simulation, see L. 

Wang, et. al. PRSTAB 14, 084401, 2011) 

0 5 10 15 20
10

-3

10
-2

10
-1

10
0

10
1

10
2

Time (ms)

Y
 (


m

)

 

 

one bunch-train

two bunch-trains

four bunch-trains

six bunch-trains



Mitigation with Chromaticity 
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Chromaticity effect 
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SPEAR3

ILC KCS

damping effect of chromaticity to the beam ion instability in SPEAR3 and the ILC 

damping ring. The vertical axis is the normalized growth rate 

Chromaticity is more effective for machines with low 

momentum compaction factor,  small ring and long bunch 

length 



Comparison of the damping effect of nonlinear 

space charge force and beam optics 
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The real part of the impedance (a) and growth rate of beam ion instability (b) in ILC 

damping ring with KCS configuration for various effects 

In SPEAR3,  the two damping effects are similar 

In ILC, beam optics provides stronger damping 



Summary 

 We analyze the multi-bunch train beam ion instabilities 

with arbitrary beam optics, multi-gas species vacuum, 

nonlinear space charge force and realistic beam filling 

pattern together. All these factors provide damping to 

the instability.  

 Our analyses agree well with expensive simulation, and 

the observations in SPEAR3. 

 It is critical to use multiple gas species…. 

 Both beam optics and nonlinear space charge provide 

strong damping effect to the instability; 

 A large chromaticity can mitigate the instability at the 

expense of reduced lifetime 
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