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Lucie Linssen, LCWS12 Arlington, Oct. 22 2012 1



ﬁb Recent advances in LC detector R&D ,',’,':

, Collaboratior
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Calorimeter for ILC
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Disclaimer:
Impossible to pay justice to the ongoing detector R&D in 25 minutes !
This talk concentrates on recent 2011-2012 advances in detector technology
Collection of snapshots
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@b Detector performance requirements ,',I,':

High-precision physics calls for:

— Jet energy resolution of og /E < 3.5% for jet energies from 100 GeV to 1 TeV (< 5% at 50 GeV);
— Track momentum resolution of 6,, /p? <2-107> GeV~';
— Impact parameter resolution with @ < 5 um and » < 15 um GeV, where the resolution is expressed as:

b2
030 —a’+

p2sin® 0’

— Lepton identification efficiency better than 95% over the full range of energies;
— Detector coverage for electrons down to very low angles.

Additional requirement, due to experimental conditions:
 Manageable occupancies in the presence of beam-induced background
* Radiation hardness for forward calorimetry

Moreover, timing capabilities required for CLIC:
e All tracking detectors with ~10 ns time-stamping capability
* Time precision on calorimeter hits of ~ 1ns
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én Challenges in LC detector R&D ,',',':

These requirements lead to the following challenges:

Vertex and tracker
Very high granularity
Dense integration of functionalities

Super-light materials ultra — light
Low-power design + power pulsing
Air cooling
Calorimetry
Fine segmentation in R, phi, Z ultra — heavy

Ultra — compact active layers
Pushing integration to limits
Power pulsing

and compact
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Vertex detectors

Categories of candidate technologies

Monolytic CMOS

(3D) integrated

:n
T

Hybrid pixel

Examples

Technology

Depletion layer

Granularity

Thickness

DEPFET, FPCCD, MAPS,
HV-CMOS

Specialised HEP
processes, r/o and
sensors integrated

Partial

Down to 5 um pixel size

~50 um total thickness
achievable

SOl
MIT-LL, Tezzaron,
Ziptronix

Customized niche
industry

Processes with focus on
Interconnectivity

Partial or full

Down to 5 um pixel size

~50 um total thickness
achievable

CLICpix
(TimePix3, Smallpix)

Industry standard ASIC
processes;

HEP-specific high-resistivity
sensors

Full => large fast signals

25 pum pixel size

~50 um sensor + ~50 um r/o

ILC
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Categories of candidate technologies

@b Vertex detectors 1

(3D) integrated

;in

Hybrid pixel

Monolytic CMOS
Examples DEPFET, FPCCD, MAPS,
HV-CMOS
Technology Specialised HEP
processes, r/o and

SOl
MIT-LL, Tezzaron,
Ziptronix

Customized niche
industry

CLICpix
(TimePix3, Smallpix)

Industry standard ASIC
processes;

Smaller pixels <

Thinner detectors <

» High level of pixel functionality

> Fast time-stamping

ILC
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@

Vertex detector: FPCCD (ILC) ,',I,':

* Design of FPCCD vertex detector

* Recent highlight of sensor R&D

~5 um pixel for inner 2 layers - sub - um
point resolution expected

~10 um pixel for outer 4 layers

Acceptable pixel occupancy even with
signal accumulation over 1 bunch-train

Relatively slow readout speed of
~10M pixels/s

Small (6 mm X 6 mm) prototype

* 4ch (output nodes)/chip

e All 6 um pixels

* It works!
Large (65 mm X 13.4 mm) prototype
Almost real size prototype for inner layers
8ch/chip
12 um (2ch), 8 um (2ch), and 6 pm (4ch) pixels
To be tested

Elf{=t

prototypes
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QB Vertex det.: monolithic CMOS (ILC) ,',’,‘:

Monolithic sensor, CMOS process with high-

o ) _ 50 pm sensors ZIF connector to servicing board
resistivity epitaxial layer I e
e Electronics integrated in pixel
* Correlated-Double Sampling (CDS) in pixel Low mass flex cable 7 |

* Rolling shutter read-out (coarse timing)
* Analog or digital readout possible

2 types of sensors for inner and outer layers
MIMOSA-30 : Dual sided readout out
* 1 side for spatial resolution (16x16 um pixel),
e 1side for timing (~10us, 16x64 um pixel)
MIMOSA-31 : Larger pixel for reduced power
consumption (35x35 um)

Spatial resclution

Time resolution i

Further R&D: increased epitaxial layer, 180 nm CMQOS, thinner assemblies
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3D - interconnect and active edge sensor development

Synergy with other projects (LHC upgrades)

3D multi-tier wafer assembly
For high-density functionality

Allows for optimal combination of processes: ASIC+sensor

Successful full VIP2b-3D 0.13 nm CMOS run at Tezzaron
Earlier 2D tests => good functionality

3D testing is underway
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Chronopixel R&D

Monolithic-CMOQOS, with time-slicing ~10 ps
Ultimate design will require 45 nm technology

2"d prototype:

e Recently fabricated in 90 nm technology

* Pixel size 25*%25 um?

* Implementing lessons from 1%t prototype
Received from foundry, June 2102.
Looking forward to results of ongoing tests
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é® Vertex detectors: CLIC pixel R&D ,',I,':

Hybrid approach: Analog part of a CLICpix pixel
e Thin (~50 um) sensors (e.g. Micron, CNM, VTT) A -
* Thinned High density ASIC in very-deep-sub-micron:
« TimePix3, Smallpix <= R&D steps Sy
e CLICpix -
* Low-mass interconnect
* Micro-bump-bonding
* Through-Silicon-Vias (R&D with CEA-Leti)
e Chip-stitching
* Power pulsing and air cooling foreseen

discriminator

=
CLICpix 5
* 65 nm technology
e 25x25 um? pixels
electrons * 4-bit TOA and TOT information
* 10 nsec time-slicing
* Power 2 W/cm? (continuous)
e With sequential power pulsing
* 50 mW/cm? -
64x64 pixel demonstrator Leakage compensation
Submission November 2012 v I == 7
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Q!B Vertex detector: Power pulsing ,',I,':

Vertex power pulsing design + first lab tests:

* With vertex analog powering in mind: ~2 Aat 1.2 V for ~15 pus
* Low-mass !

BackEnd cable DCDC Flex cable Low mass Flex Cable
——— = 100[m)] — 2[em] " 30[cm] " 12[em)]
BE | %
t10v tagv  1fem] ~ LDOS + capacitors _.i q'.-q.-q.—q.—qmm.—-v.-ﬂ-‘v.}-

|
Readout ASICs + Sensors —| tiav I

Figure: Half ladder proposed powering scheme
Emulation of: DC-DC converter + flex cable + (LDO/capacitors) + Pixel module

Equivalent 0.145% X0/layer in vertex region
20 mV Voltage ripple achieved

Power Supply

e

Low mass
flex Cable

Flex cable Ladder DCDC BackEnd cable
1[em] i .._?.A[cm] a % : LDQS +
\ . \ capacitors

ASICs + [

Sensors | &

Figure: PCB that emulates the readout ASICs power consumption. It integrates the low
mass flex cable, the array of LDOs and capacitors, and their interconnections.

SIT1 SIT2 Vertex Barrel VvXEC Figure: 30 cm long Flex cable
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Tracking => TPC pad readout "’I":

Cosmic muon shower

ATHERIE 10 U 0 00 00 @ W 00 0 [0 o
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S-Altro16 (130 nm)

Highly integrated analog
+digital TPC readout chip
=> Fully tested and available

Power pulsing at 50 Hz => factor 18 gain in power < R T
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@

* New Ingrid production of one wafer (at IZM)
* Major improvement in the protection layer (Si-Nitride)
e All tested Ingrids have survived more than 5 weeks
- even with high gain (i.e. more frequent sparking)
e Good signal uniformity, only very few closed holes
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TPC => pixel readout H
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Several other TPC R&D not covered here:
Double / triple GEM studies, Octopus etc
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Tracking => “chip on sensor” ',’,‘:

SiD tracker module

KPiX power/data
connections

/\

bias

connectior\

e 1024-channel KPIX chip is produced and tested
* Sensor with double metal-layer routing is available
* Kapton pig-tail available (bonding compatibility ....)

Pending possibilities to fully bond chip-on-sensor:
tests are ongoing, combining KPIX chip and new pigtail connection.
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é@ Tracking (strips) ,,I,‘:

Charge division for 2"d coordinate in microstrip silicon sensors

 Aim: determine the coordinate along the strip. Implemented with slightly resistive
electrodes (doped polysilicon) => interesting for low-occupancy tracker regions

* Position accuracy of a few percent of the microstrip length achieved
* on the first prototypes (POLYSTRIPS sensors, 2012 JINST 7 PSOiK)S).

Strip: length 20 mm ;mﬁil T‘é”
width 20 pum %3 K h
Pitches:  implant 80 um |

readout 80 um Fractional Position = y/L = S2/(S1 + S2)

Electrode: 12.2 Q/um (2.8 Q/um) L T e e e e Bmm

1'0-. —a— Measured Fractional Position T

0.9 4 |—e— Simulated Fractional Position

0.8 -

07 12.2 Q/um
0671 RC=450ns

''''''''''

0.5 4
0.4

Fractional Position

0.3
0.2

01—
0.0

Actual Fractional Position

I ' 1 T 1 T I ' I T 1 T I T I ' I '
0.0 0 1 0.2 03 04 05 06 07 08 09 10 11
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@ Calorimetry (CALICE) . ,:,l,n:

also
separate
SiD R&D

=l

f f

With major technological prototypes in beam tests in 2011-2012

Micro
megas
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|
ECAL: Si-W (CALICE) ilr
Technological Si-ECAL prototype % m——
Real-scale detector integration model —— 4 ces ow sonmD

Large Si sensors with small 5x5 mm?2 PADs
SKIROC ASIC “in” thin PCB

System with 1200 cells in DESY test beam in 2012
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ECAL: Si-W (SiD) ",’,‘:

#

contacts
|

Test beam stack in preparation
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@  EcAL Scint-ECAL (CALICE)  §If

absorber
Innnmmm I
Muyznrgnwzwwzzz 7
G scintillator
strips X,y
integrated
electronics
(SKIROC)
Thireennire] 12 ooy
T “ MPPC S
Strips of 45*5*2 mm?3, 144 channels/ plane 1600 pixels

1x1 mm?
Currently in DESY test beam, October 2012

1cm .
i Row of MPPC (SiPM) l
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A-HCAL (CALICE) ilr

AHCAL 2" generation fully integrated prototype planes, now in DESY test beam

L LS

fuII scintillator
plane (144)

N

reflector on
heat drain plate

o«

communication LED calibration power
system e

_ integrated electronics, based on SPIROCZb
- with self-triggering, timing, power pulsing
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HCAL: DHCAL (CALICE] ,",',‘:

Steel DHCAL

M Y= , Tungsten DHCAL

i i ,- Al s 500’000 readout channels
bl ,WHH”:’H | ||l B F

{1l

54 glass RPC chambers, 1m? each

PAD size 1x1 cm?

Digital readout (1 threshold)

100 ns time-slicing

Fully integrated electronics

Main DHCAL stack (39) + tail catcher (15)
Total 500’000 readout channels

Successfully tested: 2

2010+2011 Fermilab W-DHCAL rt=at 210 GeV (SPS)
Steel absorber
2012 CERN PS + SPS CERN test setup includes fast readout RPC after (T3B)

Tungsten absorber
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én HCAL: SDHCAL (CALICE)

Steel SDHCAL 5™ i

500’000 readout channels §

~50 glass RPC chambers, 1m? each
PAD size 1x1 cm?

Semi-digital readout (3 thresholds)
200 ns time-slicing

Fully integrated electronics

S Y
o
Ak

With power-pulsing !
Separate power-pulsing tests in 3T magnet
=> Stable signal response

Full SDHCAL stack successfully tested:
2012 (2011) CERN - ongoing
Steel absorber
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ﬂb Calorimetry: Micromegas / GEM ,',I,‘:

Micromegas

Two 1 m2 chambers, multi-threshold readout
Successfully tested within SDHCAL stack, 2012

1

32x48 pads

l—|
(VI D D I

St St S St St a8}
TEEEE R (R

«~—— Cathode

i «—— Spacer(t=3 mm)

) GEM Foils
ﬂ# (33x100 mm?2)
Spacer(t=1 mm)

Readout Board

of 1 cm? on back side

Base plate

After successful tests with 30x30 cm
GEM chambers, development

towards of 1m? plane has started.
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Forward calorimetry ,',I,‘:

<
Fully instrumented sensor planes

— Silicon (and GaAs) planes

— Dedicated FE and ADC ASICs (4-
metal 350 nm CMOS techn.)

— Stable operation in beam

- S/N =20 for MIP

— Good signal uniformity

Also: successful radiation tests of
large-scale GaAs sensors

O UUUUDDUILILILILIL

1 € New ADC ASIC prototype 130 nm
|+ 8-channel, 10 bit SAR

| » Fully differential

* 40 MHz

BEAN chip >

* 180 nm CMOS

e FE+ADC

* beam diagnostics outp
Lucie Linssen, LCWS12 Arlington, Oct. 22 2012 1 S
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&!b Engineering ,',I,‘:

Progress in engineering work, applied from the very large to the very small
Picture illustrates: interplay and data exchange between ILD / SiD / accelerator

Japanese underground hall
Design, ILC-EDMS
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4 cai iin
Solenoid coil H

Extrusion of Al-Ni reinforced conductor

e

—; -

(a) A1 0% CW (b) Al-Ni 0% CW

30 mm

57 mm

Conductor size, compared to ATLAS
solenoid conductor

(c) Al 20% CW (d) AI-Ni 20% CW

Change in material properties of Al and Al-Ni
before and after cold-working

Material property trends behave as expected

Shear test Lucie Linssen, LCWS12 Arlington, Oct. 22 2012 27



&!b summary and outlook ',I,':

Summary
Despite funding difficulties, there is a broad ongoing detector R&D program in
* Pixel detector
e TPC tracker
e Forward-region tracking
* PFA-based calorimetry + forward calorimetry
*  While main silicon tracker R&D (equally challenging !) lags a bit behind

R&D is successfully moving to fully integrated technologies
e This holds in particular for calorimetry

My personal comment:

In the coming years, strengthening is required in domains of:
* Low-mass Vertex-detector + Tracking integration issues
* Power pulsing !

With many thanks to: Karsten Buesser, Dominik Dannheim, Cristian Fuentes, Wolfgang
Lohmann, Jochen Kaminski, Stefanie Langeslag, Felix Sefkow, Yasuhiro Sugimoto, Tohru
Takeshita, lvan Vila ....

....and for DBD’s and lots of material | simply found on various LC sites ....
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@D Vertex detector: DEPFET (ILC)  {IF

« The Depleted Field-Effect transistor relies on a
depleted layer located under a FET. .
« A Potential minimum is created in the channel of gate DEPFET- matrix reset

. oft T [oft
the transistor Y J%%t{ e
« Accumulation of charge from ionizing particles " [hed
.z - - - . . |off .-T ‘._-T ‘ET_ ._T oft H
modifies charge distribution in the channel and 2X N R SR
increases transistor current 1| | we
—:\’ off %%zé. i aft (:?
« Monolithic sensor allows for thin assembly l S O O 1 }
(50 um , ex: PXD6) o o VY dan ] Ve
 Allows for small pixel size (~25x25 pm) L__oomeen |
o—<j—

» Integrating sensor (Frame ~25-100ps)
-> coarse time stamping
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G!b Vertex detector: SOI pixel sensor ,',I,':

+  CMOS sensor on SOl wafers  fadistion
— Fully depleted High-Resistivity sensor ;_—T I M:':"" i 1
— Electronics on low resistivity wafer Bured "= L 05 .LE—»’ t_:lh_, =
separated by BOX from sensing layer Odde) 4 : pr
« Allow for standard CMOS electronics ";’,* :
— Fast time stamping possible "".l miglasE:?Zi)tsrg)vity y
— Complex pixel « intelligence » * v //
— Insulation of each device from bulk allows f |

for low leakage-current operation
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@D Digital ECAL: SPiDeR-INMAPS  jIF

Digital ECAL concept for rates up to 100 particles/mm? => ~50 um pixel size

NWELL suUB NMOS / PMOS WELL
DIOOE CONN TRANSISTOR TRANSISTOR CONN
: - - e ww e w W
« 168x168 pixel grid ik 9 NWELL
\N—— %

. 5(.)><'50 um? pixel size N\

* Digital readout o N/ .

* Low noise — ofe EPITAXIAL LAYER

* INMAPS process
Deep P-WELL implant for charge collection poDenT

* Charge collected by diffusion to signal diodes

SUBSTRATE

Successful BEAM tests at CERN and DESY

* With MIPs and particle showers

* Confirms increased MIP efficiency with INMAPS
technology

e Shower multiplicity increases with incident energy =>
indicating validity of DECAL concept

TPAC sensor
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