

SLS Emittance Monitor

Natalia Milas, Masamitsu Aiba, Åke Andersson, Michael Böge, Jonas Breunlin, Martin Rohrer, Angela Saa-Hernandez, Volker Schlott and Andreas Streun

> October 25th 2012 LCWS 2012 – CLIC/ILC working group on Damping Rings

Contents

- Motivation EU-Project TIARA WP-6 SVET
- Swiss Light Source 1 pmrad Vertical Emittance
- Measurement Principle $-\pi$ -Polarization Method
- New Monitor Design Advantages and New Features
- Critial Issues and Components
- Status & Outlook

Test Infrastructure and Accelerator Research Area www.eu-tiara.eu

Work Package 6 "SVET"

Partially funded by the European Commission under the FP7-INFRASTRUCTURES-2010-1/INFRA-2010-2.2.11 project TIARA (CNI-PP). Grant agreement no 261905.

SVET: SLS Vertical Emittance Tuning

- → investigate ultra-low vertical emittance tuning and control in the regime of strong IBS
- → relevance for damping rings of future linear colliders & for next generation light sources
- → upgrade Swiss Light Source to enable R&D on ultra-low emittances

SVET Partners

PSI → SLS coupling suppression and control

CERN → CLIC damping ring design

INFN/LNF → Super-B factory design

Max-IV-Lab → MAX-IV emittance measurement and coupling control

SVET Activities

1. verification of low vertical emittance

beam size measurement: σ_y magnet optics control: β_y emittance $\mathcal{E}_y = \sigma_y^2 / \beta_y$

design of a high resolution beam size monitor at SLS (PSI and Max-Lab)

2. minimization of vertical emittance (M. Aiba's talk)

storage ring alignment and optics correction tuning methods and automation

skew quadrupole and orbit settings (PSI and INFN / LNF)

3. intra beam scattering simulations and measurements

emittance and energy spread increase at high currents

low energy (1.6 GeV) operation of SLS (PSI, CERN and INFN / LNF)

Swiss Light Source – Some Key Parameters

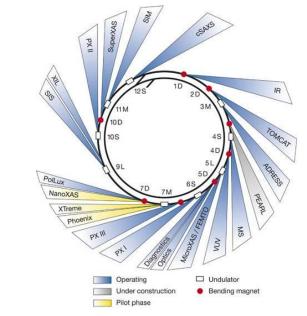
Beam Energy 2.4 GeV

• Circumference 288 m

Emittances

horizontal 5.5 nm rad vertical 1 ... 7 pm rad

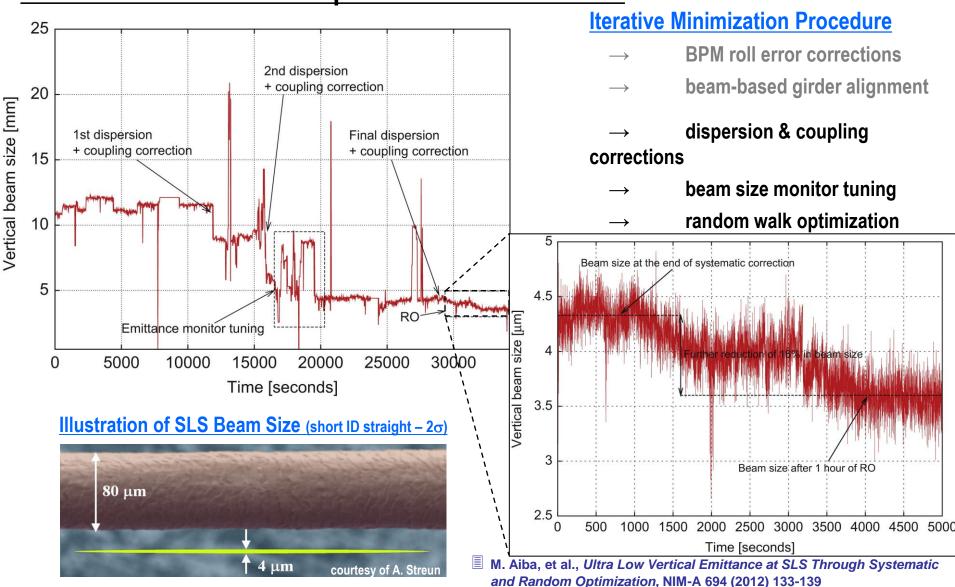
• Coupling: 0.03 % ... 0.1 %


• Energy Spread 0.09 %

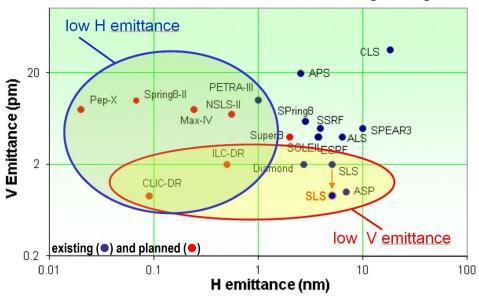
• Beam Current 400 mA (top-up operation)

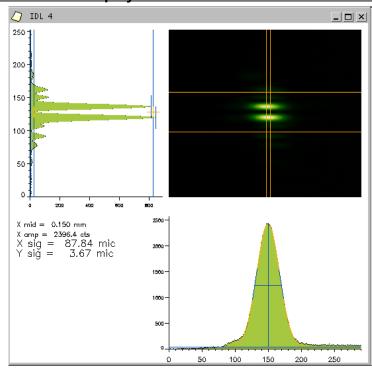
• Life Time ~ 8 – 10 h

• Stability < 1 μm (photon beam at front end)


SR User Facility with 19 Beam Lines (Status 2012)

SLS Vertical Emittance Optimization – Results

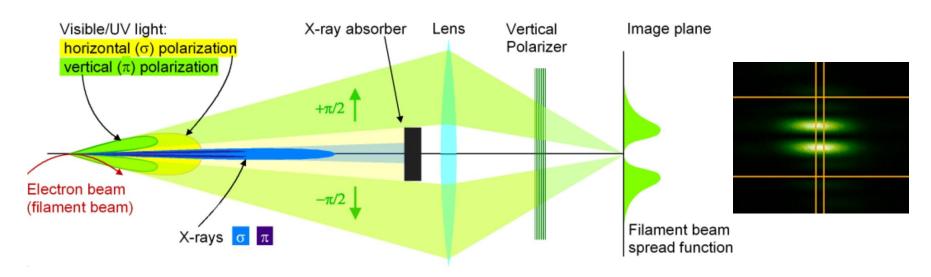



SLS Vertical Emittance Optimization – Results

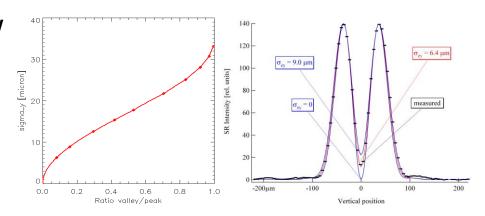
- vertical beam size: 3.6 μ m \pm 0.6 μ m
- vertical emittance: 0.9 pm ± 0.4 pm
- error estimate from beam size and β-function at monitor
- dispersion not subtracted

Horizontal and Vertical Emittances of Storage Rings

Beam Size Display from SLS π -Polarization Monitor

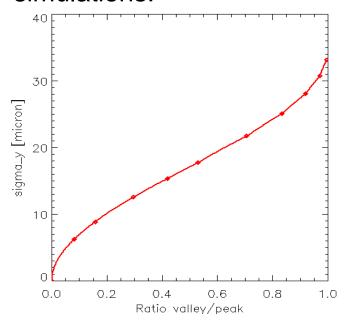

Figure taken from:

R. Bartolini, Low Emittance *Ring Design*, ICFA Beam Dynamics Newsletter, No. 57, Chapter 3.1, 2012 – and updated.

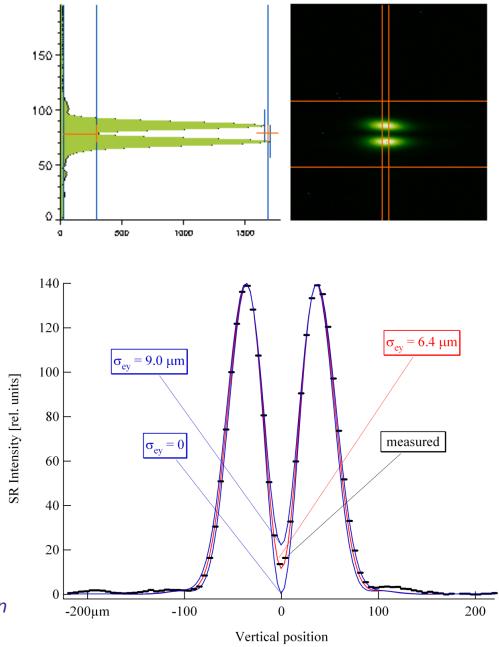


Principle of the SLS Beam Size Monitor – The π -Polarization Method

🗏 Å. Andersson, et al., Determination of Small Vertical Electron Beam Profile and Emittance at the Swiss Light Source, NIM-A 592 (2008) 437-446


- imaging of vertically polarized SR in the visible / UV
- phase shift of π between two radiation lobes
 - → destructive interference in the mid plane
 - \rightarrow **I**y=0 = 0 in FBSF
- finite vertical beam size \rightarrow **I**y=0 > 0 in FBSF
- SR wavelength of "old" SLS monitor: 364 nm
- look-up table for beam size determination from SRW

O. Chubar & P. Elleaume, Accurate and Efficient Computation of Synchrotron Radiation in the Near Field Region, EPAC 1998


Measurement

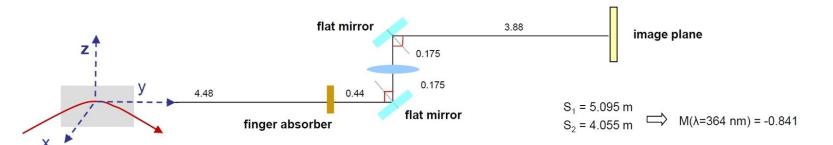
- Wavelength 364 nm
- Get beam height from peak-to-valley intensity ratio
- Lookup-table of SRW* simulations:

* Synchrotron Radiation Workshop

O. Chubar & P. Elleaume, Accurate and efficient computation of synchrotron radiation in the near field region, EPAC 1998.

Design Considerations of the "Old" and "New" SLS Beam Size Monitors

operating wavelength: 403 / 364 / 325 nm


opening angle: 7 mrad_H x 9 mrad_V

finger absorber to block main SR intensity

imaging by fused silica lens

• magnifications: 0.854 / 0.841 / 0.820

• surface quality of optics: $< 30 \text{ nm} (\lambda/20 @ 633 \text{ nm})$

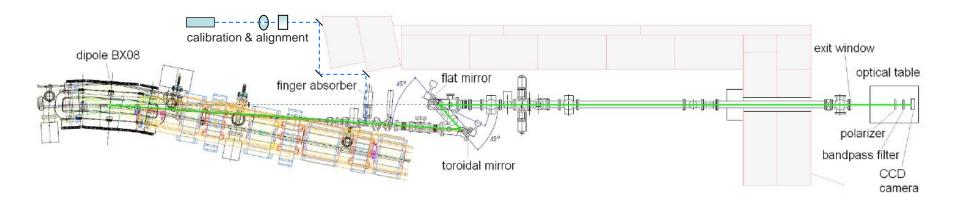
operating wavelength: variable (266 nm)

opening angle: 7 mrad_H x 9 mrad_V


finger absorber to block main SR intensity

• π -polarization or interferometric method selectable

imaging by toroidal mirror

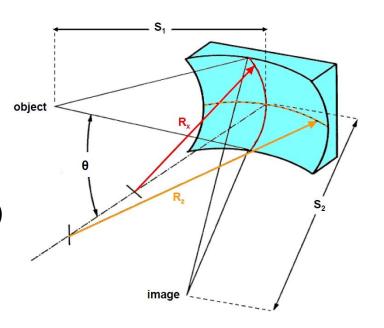

• magnification: 1.453

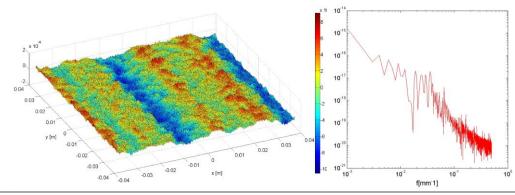
• surface quality of optics: $< 20 \text{ nm} (\lambda/30 \otimes 633 \text{ nm})$

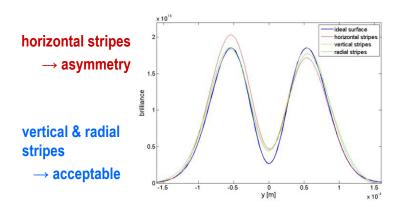
The "New" SLS Beam Size Monitor - Beam Line X08DA

Main Features of the "New" SLS Beam Size Monitor

- X08-DA allows for longer beam line
- higher magnification ratio (M = -1.45)
- toroidal mirror as focusing element
- π -polarization & interferometric method
- · alignment & calibration set-up

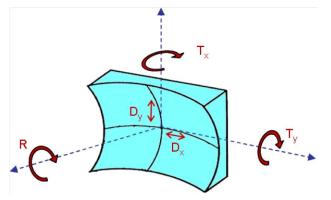

- → optics table fully accessible outside of accelerator bunker
- → increase of measurement precision
- → free selection of SR wavelength without shift of image plane
- → shorter wavelength increases resolution
- → matched operating ranges (nominal and high resolution)
- → cross-checking of results
- → online inspection of monitor at 266 nm and 532 nm

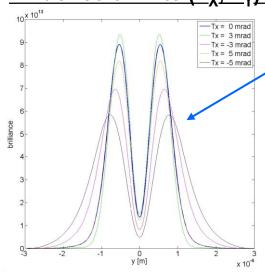

The "New" SLS Beam Size Monitor - Critical Elements and Issues I


Focusing Element - Toroidal Mirror

- Material: SiC (silicon carbide) or Si, Al-coated (UV enhanced)
- Surface Quality: slope error 0.2 arcsec roughness 21 nm pv $(\lambda/30)$, < 1 nm rms waviness horizontal, vertical, radial

Modelling of Toroidal Mirror Surface Quality

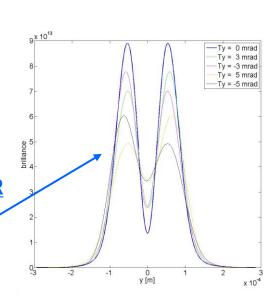



The "New" SLS Beam Size Monitor — Critical Elements and Issues II

<u>Toroidal Mirror – Offsets & Misalignments</u>

- horizontal offset D_X • vertical offset D_Y • vertical within \pm 50 μm
- rotation R (not a degree of freedom) < 1 mrad

Influence of Tilts (T_X, T_Y) and Axis Rotation



horizontal tilt T_X

symmetric broadening and and washing out of peak-to-valley pattern

rotation around mirror axis R and vertical tilt T_Y

asymmetric washing out of peak-to-valley pattern for R & T_Y

The "New" SLS Beam Size Monitor - Calibration & Alignment

Schematic of Calibration & Alignment Set-Up

mode images from: Meyrath et al., Opt. Express, Vol. 13, Issue 8, pp. 2843-2851 (2005)

CryLas FQSS 266-Q Laser...:

 λ_1 = 266 nm, λ_2 = 532 nm, vertically polarized (100:1), TEM₀₀

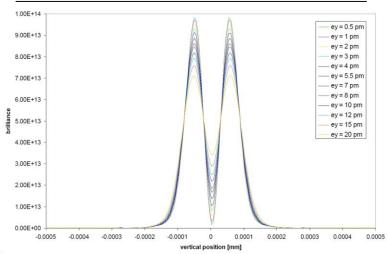
pinholes as virtual source...:

diameters of 100 μ m, 50 μ m, 25 μ m, 15 μ m, 10 μ m, 5 μ m, 1 μ m

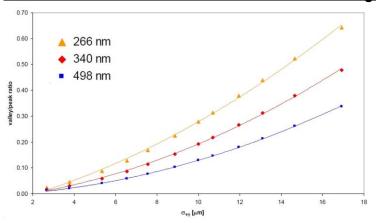
"mode transformation"

"polarization rotation"...:

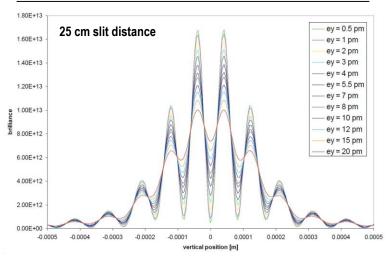
 $\lambda/2$ waveplates at 0° (upper half) and 90° (lower half)

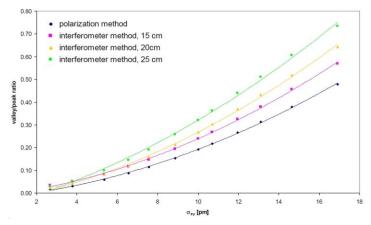

remote controlled mirrors...:

for beam transfer into π -polarization beam size monitor

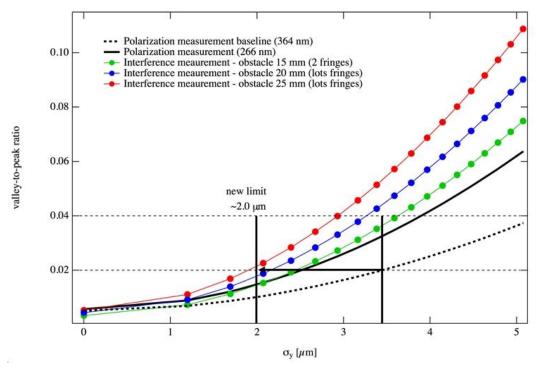


The "New" SLS Beam Size Monitor - Expected Performance




 π -Polarization Branch - Resolution vs Wavelength

Interferometer Branch - Emittance Resolution


Interferometer Branch - Resolution vs Obstacle Size

<u>The "New" SLS Beam Size Monitor – Expected Performance</u>

Comparison: π -Polarization Branch – Interferometer Branch

- improved resolution
- two measurement methods
- calibration & alignment path

- \rightarrow ~ 4 μ m (old monitor) to < 2 μ m (new monitor)
- $\rightarrow \pi$ -polarization for nominal SLSoperation
- → interferometer for low emittance studies
- → online check of monitor performance

Summary and Outlook

- methods for emittance tuning established at SLS (within TIARA-SVET collaboration)
 - \rightarrow lowest vertical emittance of 0.9 \pm 0.4 pmrad
- design of "new" high resolution beam size monitor at SLS
 - \rightarrow application of π -polarization and interferometeric methods
 - → overlapping sensitivity ranges for nominal SLS operation and low emittance studies
 - → mirror optics (toroidal focusing mirror) provides free selection of SR wavelength
 - → sensitivity study using SRW provides specifications for optical elements
 - → calibration and alignment branch allows for online monitor performance check
 - \rightarrow expected measurements resolution for vertical beam height < 2 μ m
- next steps...:
 - → installation of "new" monitor in SLS X08DA beam line in January 2013
 - → further emittance minimization until mid of 2013 (SLS quantum emittance limit at 0.2 pmrad)
 - → automated coupling feedback using "new" beam size monitor in 2013

BACKUP SLIDES

Pre-Requisites and Tools for SLS Vertical Emittance Tuning

1. high beam stability as a pre-requisite

top-up operation

precise BPMs: ~ 100 nm rms (< 100 Hz)

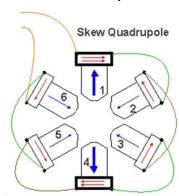
fast orbit feedback

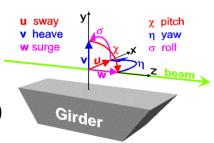
→ high thermal (long term) stability

orbit control & short term stability

2. procedures & equipment for vertical emittance tuning

re-alignment (beam-assisted girder alignment) of storage ring


→ remote positioning of 48 girders in 5 DoF (eccentric cam shafts drives)


skew quadrupoles for coupling control (36 in case of SLS)

→ sextupoles with additional coils

high resolution beam size monitor

 $\rightarrow \pi$ polarization method

Procedure for SLS Vertical Emittance Tuning

- 1. measurement and correction of BPM roll error
 - \rightarrow avoid "fake" vertical dispersion readings (from 48 dispersive BPMs with $\eta_{hor} \neq 0$)
- 2. realignment of magnet girder to remove main sources of vertical dispersion
 - → reduction of rms vertical correction kick from ~ 130 μrad to ~ 50 μrad
- 3. meas. & correction of vertical dispersion and betatron coupling
 - → model-based skew quadrupole corrections (12 dispersive and 24 non-dispersive skew quads)
- 4. meas. & correction of vertical dispersion, betatron coupling and linear optics
 - → model-based skew quadrupole corrections and orbit bumbs
- 5. <u>"random walk" optimization of vertical beam size</u>
 - → skew quadrupole corrections using beam size measurements from profile monitor works in the background (small steps), overcomes measurement limitations and model deficiencies