Open discussion for physics motivation, future designs, and possible paths for γγ colliders

Mayda M. Velasco

LCWS 2012

Oct. 25, 2012

Physics motivation

- Complementarity of γγ colliders to e⁺e⁻ Higgs factories due to:
 - large cross section of γγ to h, H, A and hh etc.
 - strength of having both:
 - circular (J=0 or 2) polarization
 - linear polarization -- separation of odd and even states

is all well documented.

- Production of more exotic states also well developed
- **Question:** Why γγ-colliders are not more advanced and better known?

So what is the problem?... in my opinion

- So far, mostly consider as an EXTRA OPTION of a much bigger project, like ILC
- Technical issues associated with the Laser Compton Back-Scattering needed to produce high energy photon beams makes the more conservative members of our community concern about the design
- If we want a γγ collider, we need to address these two issues!

My suggestions

 Request ICFA (& Snowmass) support to look at the physics case and possible designs of γγ colliders on their own

- Do not necessarily start with the Higgs factory, but a simpler design that can do both:
 - Interesting and relevant physics, and
 - Advance the technical aspects

Some examples of physics topics

- Lower energy γγ or medium energy eγ machines that can give good physics and serve as stepping stone for higher energy γγ/eγ/e⁻e⁻ colliders
- Examples,
 - $-\gamma\gamma \rightarrow \tau^+\tau^-, \ \gamma\gamma \rightarrow \tau^+\tau^-\gamma \text{ with } E_{cm} \text{ (e-e-)} \sim 10 \text{ GeV}$
 - Tau properties, including Magnetic-Moment of $\boldsymbol{\tau}$
 - Significant number of inconsistencies among LEP and Bfactory based measurements
 - Since taus are the heaviest lepton, it is very important to understand them well!
 - $\gamma e^{-} \rightarrow W^{-} \nu \rightarrow \tau^{-} \nu_{\tau} \nu_{e}$ (only one e⁻ converted to γ)
 - Well control environment for τ production via W
 - Precise measurements of the $\Gamma_{\rm W}$ and $M_{\rm W}$ starting from an $E_{\rm cm}$ (e⁻e⁻) = 120 GeV

γ e → W ν: Already discussed by us in the past in a CLIC based design

Figure 20: The sensitivity with which Γ_W might be measured at in $e^-\gamma$ collisions, as a function of the integrated luminosity available.

γ e → W ν: CLIC based CLICHÉ Design ~70% Conversion efficiency for both e- beams and polarized

Figure 18: Luminosity spectra and polarization for different spin states as functions of $E_{CM}(e^-\gamma)$, assuming the CLIC 1 parameters for 75 GeV electrons obtained with DIMAD [20] and CAIN [26] for $\mathcal{L}_{ee} = 4.8 \times 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$.

For a pure eγ designed only one photon beam used and the Luminosity will be ~2 times large than this

In this operation mode we are capable of making measurements to keep beam systematic under control: Ex. Polarization

Figure 3: The variation in the cross section for the $e\gamma \to W\nu$ process as a function of polarization. This analysis includes the full photon spectrum in the cross section calculation. The attainable statistical error in the cross-section measurement is also indicated.

Some comments in $\gamma\gamma$ \rightarrow ff and γ ff

Figure 1.1.3: Comparison between cross sections for charged pair production in <u>unpolarised</u> e^+e^- and $\gamma\gamma$ collisions. S (scalars), F (fermions), W (W bosons); $\sigma = (\pi\alpha^2/M^2)f(x)$, M is the particle mass, W is the invariant mass (c.m.s. energy of colliding beams), f(x) are shown. Contribution of Z boson for production of S and F in e^+e^- collisions was not taken into account, it is less than 10%

The $\sigma(\gamma\gamma \to \tau\tau) >> 100$ pb at low energy

Contributions to $\gamma\gamma \to \gamma f f$ (f=charged fermions):

In case of polarization...

$$\sigma(J=0)/\sigma(J=2) \simeq 0.33 \text{ at } x \simeq 0.2$$

$$\Rightarrow \sigma(\gamma\gamma \to \gamma f f) > 100 \text{ pb}$$

Example, at 120 GeV
About 10% of events
Survive with basic cuts

Examples of machines #1

Figure 1: Sketch of the possible layout of a $\gamma\gamma$ collider based on CLIC 1, the CLICHE concept [3].

Examples of machines #2

Figure 3: Sketch of a layout for a $\gamma\gamma$ collider based on recirculating superconducting linacs – the SAPPHiRE concept.

Comparison of Parameter with Higgsfactory inn mind... need to be revise

Table 1: Example parameters for $\gamma\gamma$ colliders based on CLIC-1 (CLICHE, left column), as optimized for $M_h \sim 115$ GeV [3], and a pair of recirculating superconducting linacs (SAPPHiRE, right column) optimized for $M_h \sim 125$ GeV.

Variable	Symbol	CLICHE [3]	SAPPHiRE
Total electric power	P	150 MW	100 MW
Beam energy	E	$75~{ m GeV}$	80 GeV
Beam polarization	P_{e}	0.80	0.80
Bunch population	N	4×10^{9}	10 ¹⁰
Number of bunches per train	n_b	154	
Number of trains per rf pulse	n_t	11	
Repetition rate	$f_{ m rep}$	100 Hz	cw
Average bunch frequency	$\langle f_{ m bunch} angle$	169 kHz	$200~\mathrm{kHz}$
Average beam current	$I_{ m beam}$	0.11 mA	0.32 mA
RMS bunch length	σ_z	$30~\mu\mathrm{m}$	$30~\mu\mathrm{m}$
Crossing angle	$oldsymbol{ heta_c}$	$\geq 20 \text{ mrad}$	$\geq 20 \text{ mrad}$
Normalised horizontal emittance	ϵ_x	$1.4 m \mu m$	$5\mu\mathrm{m}$
Normalised vertical emittance	ϵ_y	$0.05\mathrm{\mu m}$	$0.5 m \mu m$
Nominal horizontal beta function at the IP	eta_x^*	2 mm	$5\mathrm{mm}$
Nominal vertical beta function at the IP		$20\mu\mathrm{m}$	$0.1\mathrm{mm}$
Nominal RMS horizontal IP spot size	σ_x^*	138 nm	400 nm
Nominal RMS vertical IP spot size	σ_y^*	2.6 nm	18 nm
Nominal RMS horizontal CP spot size	$\sigma_x^{\check{C},*}$	154 nm	400 nm
Nominal RMS vertical CP spot size	$egin{array}{c} eta_y^* \ \sigma_x^* \ \sigma_y^{C,*} \ \sigma_y^{C,*} \ \mathcal{L} \end{array}$	131 nm	180 nm
e ⁻ e ⁻ geometric luminosity	\mathcal{L}	$4.8 \times 10^{34} \ \mathrm{cm^{-2} s^{-1}}$	$2.2 \times 10^{34} \ \mathrm{cm^{-2} s^{-1}}$

Laser needs

Table 2: Example parameters for the CLICHE mercury laser system [3], and for the SAPPHiRE laser system, assuming $\mathcal{L}_{ee} = 4.8 \times 10^{34} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$ and $\mathcal{L}_{ee} = 2.2 \times 10^{34} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$, respectively.

Variable	Symbol	CLICHE [3]	SAPPHiRE
Laser beam parameters			
Wavelength	λ_L	$0.351~\mu\mathrm{m}$	$0.351~\mu\mathrm{m}$
Photon energy	$\hbar\omega_L$	$3.53 \text{ eV} = 5.65 \times 10^{-19} \text{ J}$	$3.53~\mathrm{eV}$
Number of laser pulses per second	N_L	$169400{ m s}^{-1}$	$200000{ m s}^{-1}$
Laser peak power	W_L	$2.96 \times 10^{22} \; \mathrm{W/m^2}$	$6.3 \times 10^{21} \text{ W/m}^2$
Laser peak photon density		$5.24\times10^{40} \text{ photons/m}^2/\text{s}$	$1.1 \times 10^{40} \text{ photons/m}^2/\text{s}$
Photon beam			
Number of photons per electron bunch	N_{γ}	9.6×10^{9}	1.2×10^{10}
$\gamma\gamma$ luminosity for $E_{\gamma\gamma} \geq 0.6 E_{CM}$	$\mathcal{L}_{\gamma\gamma}^{peak}$	$3.6 \times 10^{33} \; \mathrm{cm^{-2} s^{-1}}$	$3.6 \times 10^{33} \; \mathrm{cm^{-2} s^{-1}}$

Figure 2: Luminosity spectra and beam polarization as functions of $E_{CM}(\gamma\gamma)$ for the CLICHE parameters [3] for 75 GeV electrons obtained with DIMAD [6] and CAIN [7] for $\mathcal{L}_{ee} = 4.8 \times 10^{34} \, \mathrm{cm}^{-2} s^{-1}$.

Figure 4: Luminosity spectra for SAPPHiRE as functions of $E_{CM}(\gamma\gamma)$, computed using Guinea-Pig [9] for three possible normalized distances (left) and different polarizations of incoming particles (right).

Energy loss not the only issue to be looked at more carefully

Table 3: Energy losses and energy spread induced in the 8 arcs of SAPPHiRE.

beam energy [GeV]	$\Delta E_{ m arc} \ [{ m GeV}]$	$\Delta\sigma_E \; [{ m MeV}]$
10	0.0006	0.038
20	0.009	0.43
30	0.05	1.7
40	0.15	5.0
50	0.36	10
60	0.75	20
70	1.39	35
80 (1/2 arc)	1.19	27
total	3.89	57

Conclusions

- We should request to ICFA & Snowmass study for support to look at the physics case and possible designs of γγ colliders
 - Independently of the e+e- collider program
- We need to keep it:
 - Simple and cost effective
 - With very interesting and relevant physics
 - While Advancing the technical aspects for future high energy γγ colliders