IPBPM test results at the LINAC end

KNU Siwon Jang

Contents

- New Low-Q IP-BPM design
- RF test of Low-Q IP-BPM
- Beam test of Low-Q IP-BPM
- Summary

New Low-Q IP-BPM design

• 11cm Low-Q IP-BPM drawings of HFSS

Results of HFSS simulation

11cm AL ver.

Port	f ₀ (GHz)	β	Q ₀	Q _{ext}	Q_L	τ (ns)
X-port	5.7127	5.684	4959.29	872.42	741.91	18.72
Y-port	6.4280	5.684	4670.43	821.61	698.70	17.23

Output signal for Y-port (11cm AL ver.)

New Low-Q IP-BPM

• Made by Aluminum (1kg for 1cavity)

RF measurement data

	Port	f ₀ (GHz)	β	Q ₀	Q _{ext}	Q_L	τ (ns)	V _{_out} [mV/um]
Designed	X-port	5.7127	5.684	4959.29	872.42	741.91	18.72	3.870
Designed	Y-port	6.4280	5.684	4670.43	821.61	698.70	17.23	3.724
Double_1	X-port	5.6968	0.656	362.34	552.14	218.77	6.112	4.870
Double_1	Y-port	6.4099	0.668	845.66	1266.7	507.11	12.59	3.005
Double_2	X-port	5.6975	0.817	483.38	591.45	265.99	7.430	4.705
Double_2	Y-port	6.4097	0.641	834.70	1302.5	508.70	12.63	2.964
Single_1	X-port	5.6991	0.855	502.05	587.04	270.61	7.557	4.722
Single_2	Y-port	6.4089	0.986	1238.0	1255.9	623.43	15.48	3.019

• Measured Q0 value shows too low for both x-port & y-port.

- Measured X-port data shows too strange, but output voltage shows little bit good.
- If possible I want to make one more set of Al IP-BPMs except volt type.

Low-Q IP-BPM Beam Test

 Double block IP-BPM performance was tested at end of linac with old high-Q chamber.

Damping Ring

High Energy Accelerators Research Organization (KEK)

Old high-Q Chamber

Test scheme @ end of Linac

• Distance between each elements

- In that test, we used just one BPM (BPM2).
- There is no more cables to connect BPM1.
- Beam test performed during 4hours. (Not enough to test other BPMs)

Results of IP-BPM y-port sensitivity

IP-BPM sensitivity

(For y-port)

= 0.87631[mV/um]

(one-port measurements)

= 2.27855[mV/um] (one-port measurements & Consider the 8.3dB cable loss)

*if we used two y-port of BPM, we would have the results 4.5571[mV/um].

Designed sensitivity

= 3.724[mV/um] for two-port

Test conditions

4 steering magnet (2 ver. + 2 hor.) => ZH1P, ZH2P, ZV1P, ZV2P 2 strip-line bpm =>ML2P, ML3P

ICT monitor: 0.87 *10^10 (at LNE)

Results of IP-BPM x-port sensitivity

IP-BPM sensitivity

(For x-port) = 0.34146[mV/um]

(one-port measurements)

= 0.88786[mV/um] (one-port measurements & Consider the 8.3dB cable loss)

*if we used two y-port of BPM, we would have the results 1.77572[mV/um].

Designed sensitivity

= 3.865[mV/um] for two-port

Test conditions 4 steering magnet (2 ver. + 2 hor.) => ZH1P, ZH2P, ZV1P, ZV2P 2 strip-line bpm =>ML2P, ML3P

ICT monitor: 0.87 *10^10 (at LNE)

Summary

- We tested new IP-BPM performance inside vacuum chamber at the end of Linac.
- The RF test results shows bad, but expected output voltage shows not bad.
- The beam test results shows quite good, Y-port results shows good performance. However, X-port results shows low performance less than expected value.
- When we discuss at France, the reason of low Q0 value seems caused by irregular surface of cavity. Therefore, the IP-BPM is polishing to check Q0 value again.