IP-BSM Beamtime Performance and Error Evaluations

14th ATF2 Project Meeting June 26, 2012 KEK, Tsukuba

Jacqueline Yan, M. Oroku, Y. Yamaguchi,

T. Yamanaka, Y. Kamiya, T. Suehara,

S. Komamiya (The University of Tokyo)

T. Okugi, T. Terunuma, T. Tauchi, S. Araki, J. Urakawa (KEK)

Highlights of this talk

Beam time Status

Feb

- ↔ 30 deg mode: fully commissioned , stably measured M ~ 0.55, σ_v ~ 150 nm
- 174 deg mode: M maybe detected

March - May

Resolve and stabilize laser system

June

- consistently measured M ~ 0.9 at 4 deg / 6 deg modes
 - systematic error studies
- Contrast ~ 0.9
- Major errors: profile imbalance, fringe tilt, phase jitter (?)
- Systematic checkup of 30 deg, 174 deg modes
 lead to summer upgrade and goals for autumn

date	notes	beta	M and Beam size
2/17	1 st detection of 30 deg	10 x 10	σy ~ 200 nm
2/21	Syst error checkup at 4, 8 deg	10 x 3	Mmax ~ 0.8
2/23-24	30 deg good results in Feb	10 x 3	M ~ 0.55, σy ~ 150 nm
	174 deg (Maybe detected)	10 x 3	Maybe σy ~ 90 nm <i>Not certain!!</i>
March April May <i>after d</i>	 Laser buildup (seeder) fluctuations Mirror tuning exchange of seeder, flash-lamps Beamlok PZT mount high laser intensity damaged optics Changed reducer lens 40% (filtered) intensity operation beam issues: instabilities in timing, current, orbit tune resonance in DR multiknob tuning hard to reduce σy (?) 	10 x 3 10 x 5 10 x 1 • Varia proble progr • not beam	system checkups at 6 deg At 30 deg: M ~ 0.1- 0.2 (300 nm?) Dus beam and laser ems delayed ess much meaningful time data

summary of IPBSM shifts during 2 weeks continuous run (6/4 – 6/15)

Week 1	contents
6/5 – 7 Startup tuning	DR \rightarrow EXT \rightarrow FF (C wire)
6/7	<u>6.3 deg:</u> _ Reducer scan M _{max} ~ 0.9 !!
IPBSM	 <u>30 deg:</u> upper rotation stage broken !! reducer scan for lower path only at 30 deg
6/8 :	 Fixed upper stage Reducer scan at 6.3 deg and 30 deg multiknob scan: but 30 deg M not very high
6/9 - 10	 Issues :Linac , DR freq. change, water temp Large EXT orbit offset and y dispersion had to be fixed More multiknob tuning at 6 deg, 7.8 deg, 30 deg M got to 0.3 at 30 deg , σ ~ 230 nm but for some reason lost M Reducer scan and sig jitter studies at 30 deg

Week 2	contents
6/11	tuning start over again from DR \rightarrow EXT \rightarrow FF
6/12 - 13	 Dispersion tuning (by Glen using C wire) Multiknob scan using IPBSM, M ~ 0.4 – 0.5, σ ~ 1 μm Disturbed by large εy, EXT orbit needed retuning
6/13 -14	 6.3 deg: Reducer optimization using both laserwire and fringe scans 4 deg (smallest possible): Mmax = 0.9 !! Take special fine data for error studies, multiknob scans
	 then switched to 30 deg : M ~ 0.35, σy ~ 250 nm
6/14 -15	 30 deg : also tried to optimize reducer, but difficult to preserves consistency M > 0.35 could not be recovered Vertical dispersion drifted
6/15	 30 deg: reconfirm optimized reducer setting then tried out nonlinear knob tuning Disturbed by large signal jitters
	 174 deg mode: Laser divergence measurement → optimize reducer setup Focal point scan for evaluating Rayleigh length, M2 factor

Beam time in February , 2012

Commissioning of 30 deg mode

Feb 17, 2012 (10 x β_x^* , 10 x β_v^* optics)

largest M_{meas} = 0.522 \pm 0.042 $\leftrightarrow \sigma_{y,meas} \sim$ 165 nm

2/17: 30 deg	M	ΔM	σ_y^*	$\Delta \sigma_y^*$	avg $E_{sig}/$ ICT [GeV / 10 ⁹ e]]
18:07	0.426	0.039	194.98	6.21	2.359]
18:09	0.390	0.043	206.63	6.48	2.403]
18:12	0.433	0.036	192.55	5.73	2.269]
18:14	0.439	0.034	190.82	5.49	2.290	
18:16	0.437	0.038	191.29	6.16	2.303	S/N:4-5
18:18	0.460	0.040	183.86	6.78	2.267	Signal jitter ~ 15%
18:20	0.444	0.035	189.20	5.77	2.450 st	able beam current
18:22	0.39	0.042	206.67	6.902	2.292]
18:24	0.453	0.037	186.17	6.203	2.356]
18:26	0.389	0.042	207.029	6.205	2.360]

M > 0.5 ($\sigma y \sim 160$ nm) easily achieved in Feb

ex: 10 consecutive 30 deg mode fringe scan on 2/23/2012

Switched to 174 deg mode: maybe first detection !!??

(10 x 3, S/N ~ 1)

Largest $M_{meas} \sim 0.13$ (stat.) $\sigma_v^* \sim 90 \text{ nm}$

8 hrs period: measured M > 0.1 many times However not satisfactory reproducibility Challenging conditions

 σ_v^{*} is still large, beam changed over time

Beam time in June , 2012

Consistently measured M ~ 0.9 at 4 deg, 6 deg modes

ex) 6 /14 swing shift: many hours of stable beam and laser After multiknob scan at 4 deg mode:

- 4 times consistent results: (M1, M2, M3, M4) = (0.89, 0.9, 0.88, 0.89)
- → switched to 30 deg mode : → Mmax ~ 0.35, $\sigma y \sim 220 250$ nm

Some other consistent fringe scans of 0.8 – 0.9 also at 6.3 deg mode

What is the difference between Feb and June ??

Feb 2012:

• measured large $M \sim 0.8$ at $4 \, \cdot 8^\circ$

• 30° : easily measured

M∼0.5(σ∼160 nm)

March – May:

many issues with IPBSM laser system and beam tuning

June :

```
•Measured M \sim 0.9 at 4° , 6.3°
•M \sim 0.35 at 30° (\sigma \sim 250 nm)
```

Our current optics need major upgrades !! → higher reliability ,consistency in path alignment and beam size measurements

(details coming up in next talk)

S/N
0.7 ~ 1 for 10x1
1 for 10x3
2.5 for 10x10

Any difference in signal jitters??

	2012		Sig jitter(%)		
June	30 deg	10x1	6/10: 9.3% 6/14: 10.5% (M ~ 0.9)		
	6.3 deg	10x1	6/13: 8.9%		
Feb	30 deg	2/17: 10x10 2/23: 10x3	2/17: 14.6% (1 st 30 deg detection) 2/23: 10.4%		
	174 deg	10x3	2/24: 6.1%		
	8 deg	10x3	2/21: 10.5% (M ~ 0.8)		

energy deposit in detector (each of 5 layers + total) Errors appear Gaussian distributed

6/10 30 deg mode

Error studies

ex1) 2/21 switched from 8 deg (M_{meas} ~ 0.8) to 4 deg mode
 σy* ~ 400 nm should give M ~ 0.94, but M_{meas} only reached 0.75
 → overall reduction factor : C ~ 0.8 (∴ 0.75 / 0.94)
 could be worse ∴ 8 deg mode already limited by syst. errors

ex2) 6/14 M_{meas} ~ 0.35 after switching to 30 deg mode
 σy* ~ 220 nm should give M ~ 0.98 at 4 deg mode, but limited at M_{meas} ~ 0.9
 → overall M reduction factor : C ~ 0.9 (∴ 0.9 / 0.98)

Laser profile imbalance

Solutions during previous run:

- **Repeated optimization of** lens / reducer setup but hard to preserve consistency
- replaced damaged optics

Major optics reform

this summer

(details in next talk)

- **Balance profile & path lengths**
- focal lens alignment
- Only use reducer for parallel propagation

Rotation Control | TD2 FineDelay LW28 LW30 | LW174 | Fringe28 Laser Wire 4.01 [degree] Save present position of mirror 1X and 2X, as references Upper path 0 Intensity Cut [e9] 2.000 - <1< 20.000 -3.259 layer 1-4 Signal Type Recalculation 149.73950 : 32.70990 10.40767 ± 0.0001 0.00240 ± 0.00018 Lower path Intensity Cut le91 2.000 ÷ <1< 20.000 ÷ 3.417 Signal Type layer 1-4 Recalculation

Graph

2000

1600

1400 1200

Graph

1800

1600 1400

1200

example: 6/15 10 avg laserwire scan signal amount different Upper: •σlaser = 19.2 μm • energy/ICT = 649.7• (peak x sigma = 12474) Lower: •σlaser = 39.6 μm • energy/ICT = 559.8• (peak x sigma = 22168) Ct.pro > 94 %- 99 %

assuming similar z-profile Cz,pro > 89%

due to

misalignment of focal point reducer setup \rightarrow affect divergence

Prism Po

9.06583 + 0.00016

0.00403 ± 0.00025

by factor of 2 !!

 $\tan \Delta \phi = \Delta x / 2f \sin \theta / 2$

δφ,

Orless

longirudinal

focal point

focal point

Relative position jitter (phase jitter)

 $\Delta y \sim 0.3 \sigma y$ along beamline,

but beam position Δy^* at IP is unknown

→ need measurement by IPBPM

Small σy^* is esp. sensitive

Estimated systematic errors from June beam time : (using data from 4 deg , M ~ 0.9)

Error types	Modulation reductio	Modulation reduction		
Laser profile imbalance	Ct,pro > 94% Cz,pro > 89%	Note:		
Fringe tilt	Ct,tilt > 98% Cz, tilt ~ 100%	these are " worst limits " of M reduction factors		
Phase jitter (←→relative pos. jitter)	Cphase > 95%			
Laser path alignment	z : > 99.5% t : ~ 100%			
polarization	Confirmed to be near	rly pure S polarized		
Total	Ctot > 77%			

Estimated systematic errors from Feb beam time data

Current	M reduction	$\sigma_y^* \lesssim 300 \text{ nm}$	$\sigma_y^* \lesssim 300 \text{ nm}$	$\sigma_y^* \simeq 160 - 200 \text{ nm}$
status	factors	4 deg	8 deg	30 deg
polarization	$C_{pow-pol}$	$\sim 98\%$		
relative pos. jitter	$C_{rel-pos}$	> 95.3%	> 95.2%	> 92.9%>
laser path	z: $C_{z,pos}$	> 99.5%	/	1
alignment	t: $C_{t,pos}$	$\sim 100\%$		
laser profile	t: C _{t,profile}	100 %	> 99.0%	> 99.9%
imbalance	z: C _{z,profile}			
Fringe tilt	t: $C_{t,tilt}$	96.6%	96.8%	79.8%
	z: $C_{z,tilt}$	100 %		
Total	$\prod_{i} C_i$	> 89.7%	> 88.9%	> 72.1%

Major syst. errors appear to be

- relative position jitter (phase jitter)
- Fringe tilt: \rightarrow improve alignment, tune $\sigma * x$ smaller, beam coupling / rotation

*σy** at 30 deg mode may have been much smaller than 200 nm (??!!)

Note) Not yet adequate data to evaluate all error types

Current status of laser system

relative Stabilized by timing scans **TDC, TD2** modules timing • Stability ~ 1% Intensity optics damaged by high intensity laser in March • Safe at ~ 40% power for now Oscillation currently stable exchanged flash lamps and seeder cavity mirror tuning profile Triangular (non-Gaussian) profile at IP dark spots \rightarrow Improved by rear mirror tuning Beamlok Major new laser table box upgrades in laser optics additional mirror for precise injection onto vertical table changed reducer and expander lens (AR coating , magnification)

Stat errors

Laser timing	1 - 3 %
Laser intensity	1.5%
Beam intensity jitters	ICT monitor resolution: 2-5% (Measured energy is normalized by ICT)
Laser pointing stability	10 ~ 15%
Beam position jitters	unknown

Summary

Beam time Status

Feb

- Commissioned 30 deg mode : stably measured M ~ 0.55, σ_{y,meas} ~ 160 nm
- ✤ 174 deg mode: M maybe detected

March - May

- System checkup
 - & treat many issues in laser optics and beam tuning

June

- M ~ 0.35 (σ_{y,meas} ~ 220 nm) at 30 deg mode :
- 174 deg mode: focal point scan

Systematic Error studies

- measured M ~ 0.9 consistently at 4 deg / 6 deg modes
 Upper limit : C ~ 0.8 0.9 (depend on condition)
- Major errors: profile imbalance, fringe tilt, phase jitter (?)

Stable system important for suppressing stat. errors

Goals and Plans for summer upgrades and 2012 autumn run

- as an effective beam tuning device
 accurately reproduce beam sizes in between mode switching
- 174 deg mode Commissioning + consistent M-detection accurately measure σy* < 100 nm
- resolve and accurately evaluate systematic errors including bias factors intrinsic to 174 deg mode

•Need to upgrade to a more stable and reliable laser optical system

➔ more details on new IPBSM setup coming up

BACKUP

Systematic errors (morning session)

•relative position jitters as laser fringe phase is scanned against beam

 \rightarrow smear M curve \rightarrow over-evaluate $\sigma y*$

- accurately measure beam jitter to correct $M_{\text{meas}}\left(\sigma_{\text{meas}}\right)$

Statistical errors :

 Beam jitter along beam line → extra BG, lower S/N, fluctuating BG levels
 Beam jitter at IP : dominate signal jitter source → hinder M detection cause laser intensity "felt" by beam to fluctuate pulse-by-pulse *large phase jitters correlated with heavy signal jitters* Feedback correction to suppress beam jitter

What causes beam position jitter ??

•magnet vibrations, unstable extraction from DR, ect.....

Evaluate max. $\Delta \alpha$ from beam time data \rightarrow translate to Δy

nhase i	fringe scans in 2011	2/21 (4 deg)	2/21 (8 deg)	$2/17 \ (30 \ \text{deg})$
priace j	$\Delta \alpha \text{ [mrad]}$	< 310	< 316	< 384
rel. pos	. jitter $\Delta y \; [m nm]$	< 376	< 192	< 62.9
svst er	C_{phase}	> 95.3~%	>95.2~%	> 92.9~%

→ Beam and laser

$$\Delta y = \sqrt{\Delta y_e^2 + \bigtriangleup \alpha^2}$$

- if Δye ~ 0.3 σy is actually achieved we can estimate (worst limit for) lase- related phase error alone , due to
- \checkmark vibration of optical components
- \checkmark final lens focal point misalignment

 ΔL : incoherent laser path jitter per path :

 \rightarrow optical path delay fluctuation : sqrt(2)* ΔL

→ phase jitter $\Delta \alpha = k_y^* \text{sqrt}(2)^* \Delta L$

fringe scans in 2011	2/21 (4 deg)	2/21 (8 deg)	2/17 (30 deg)
$\Delta y \text{ [nm]}$ (from M plot)	376	190	63
$\Delta y_e \text{ [nm]}$	< 135	< 65	< 45
"real" $\Delta \alpha$ [mrad]	289	294	289

about same for each mode

BPM Caliberation Stability :
 C-band BPMs : 1% level
 IPBPM, unknown

S-band BPMS : 5% level

(a few weeks time scale)

Expectations for BPMs

For resolution of 174 deg mode:

 $37 \pm 1.4 \, (stat)^{+0}_{-2} \, (sys) \, \text{nm}$

 $\sigma_y^2 \to \sigma_y^2 + (\Delta y)^2$

(ex:)) if $\Delta y = 4$ nm: $\sigma y^* \rightarrow 37 \pm 2$ nm

For beam stabilization with feedback

 $\Delta y < = 0.3 \ x \ \sigma y$

•174 deg mode : 10 nm stability at IP \rightarrow IPBPM resolution few nm

(< 100 nm for other modes)

• much larger σy^* upstream, 100 nm enough to show stable beam

Can also use other BPMs (Pre-IP, PIP) to reconstruct beam position, angle, resolution !!

<u>IP-BSM Goal</u>: fully commission 174 deg mode → stable measurement

Now: O(10) nm beam position stabilization

Soon: few nm resolution feedback correction for accurately measuring $\sigma y^* < \sim 50$ nm

"Full" data for IPBSM

combine former meas and raw data + extra slots for beam monitors

all **BPMs**

now

array(0-199) IPBSM:Interfere:Raw

array(200-1199) ATF2:monitors

array(1200-1239) IPBSM:Interfere:Meas

array(1240) timing gap between ATF2:monitors p

need BPM data to be put into these PVs

Correlate beam pos. jitter with IPBSM signal fluctuations

IPBSM:Interfere:Raw (200 length float array) (read only) 🕹 🖉

Interference mode measurement raw data

```
array(0) Laser Crossing Angle [deg]
array(1) Laser Fringe Pitch [nm]
array(2) Laser Fringe Phase [rad]
array(3) Laser Fringe Phase Read [rad]
array(4-19) Detector ADC array(0-15)
array(20-35) Detector ADC Pedestal array(0-15)
array(36-40) Background Shower array(0-4)
array(41-45) Compton Signal Shower array(0-4)
array(46-69) Detector HV array(0-23)
array(70-101) Scan ADC array(0-31)
array(102-133) Scan ADC Pedestal array(0-31)
array(134) TD2 Laser Timing
array(135) TDC Full Scale Range
array(136-143) TDC array(0-7)
                                         before
array(144) ICT-DUMP Charge [10^9 e-]
array(145) BPM1 X Position
array(146) BPM1 Y Position
array(147) BPM2 X Position
array(148) BPM2 Y Position
array(149-164) Charge ADC array(0-15)
array(165-174) Image Sensor 1 FT array(0-9)
array(175-184) Image Sensor 2 FT array(0-9)
array(185-199) Spare
```

Estimating Statistical Errors (Feb, 2012):

- Laser intensity < 1%
- Relative beam-laser timing < 1%
- Beam current < 3%

Altogether less than 5 % to stat. errors

Example: 174 deg	Laser intensity	Beam current	timing (jitter [ps])
00:06	0.6%	2.6%	0.8% (426 ns)
3:12 (2/23	0.8%	4.8%	0.6% (386 ns)
7:23 10 x 3 optics)	0.7%	2.2%	0.8% (452 ns)

Comparing typical beam time conditions

		S/N	BG [GeV]	Sig. jitter	iСТ [10^9 е-]
Spring, 2012	10x βy*: 3 x βy*: 1 x βy*	4 1 0.5	5 15 20	10 - 20%	4 - 6
Dec, 2011 Post-earthquake recommissioned 2- 8 deg mode	2.5 x βy*	1-2	50	15- 2 5%	5 - 7
Dec , 2010 Unstable era, large sig. jitters	1x βy*	0.5	115	25 – 30 %	2 - 3
May 2010 8 deg : σy* ~ 300 nm	10x βy*:	5-10	20	10%	4 -5

BG: stable :10 – 15 % unstable : 20 – 30 % ICT: stable : 2 -3 % unstable: > 7 %

<< S/N ratio>>

•S/N (in front layers) about
{ 2.5 - 3 for 10 x beta_y } vs {1-1.3 for 3 x beta_y }
about 2 times difference
S/N ~ 0.5 for nominal beta_y (???)

1x beta_y optics: (3/8) 30 deg

S/N ratio decreased to about 0.5 for nominal beta_y

```
{ 2.5 - 3 for 10 x beta_y} ,
{1-1.3 for 3 x beta_y }
```

Requirements / goals for beam time conditions

Parameters	Requirement / goals
Beam position	$\Delta y < 0.3 \times \sigma y$ along beamline \rightarrow affect BG, S/N, sig. jitters few nm stabilization for 37 nm
BG energy	suppress fluctuation
S/N	> 1 (at least > 0.5 even under nominal β)
Sig. jitter	< 20 % -for M detection aim for < 10% for measurement precision
Laser spot size At IP	10 – 15 μm high intensity at IP important for S/N, need compromise reducer setting with safety of optical components
Laser pointing stability	< 1 μm @ IP (< 50 μm @ other upstream PSDs)
Beam current	~ 6 x 10^9 / bunch , fluc < few%

Estimating laser pointing stability at IP for 174 deg mode:

Δ = 15.4 μm

assume most of signal jitter 21% is attributed to laser pointing jitter

laser wire scan signal:
$$E_{sig} = E_{max} \exp\left(-\frac{(x - x_0)^2}{2S_{laser}^2}\right)$$

signal jitter: $E_{sig} \rightarrow E_{sig}^* = E_{sig} + DE$ laser pos. jitter at IP: Dx

lwmon data taken at laser peak :
$$\left|\frac{E_{sig}^*}{E_{sig}}\right| = \exp\left(-\frac{Dx^2}{2S_{laser}^2}\right)$$

for 174 deg: DE/E ~ 21%,
$$S_{laser} \sim 25 \text{ mm}$$

 $\nabla Dx = S_{laser} \sqrt{2 \ln(1.21)} = 15.4 \text{ mm}$

phase drift
 → translate to relative position drift
 between beam and laser phase

laser drift $\leftarrow \rightarrow 2^*$ ky * (relative pos. drift)

beam position drift < few % of σy*

 \rightarrow neglegible for now (??)

$$\mathsf{E}_{sig} = \mathsf{E}_{av} \left\{ 1 + \mathsf{Mcos} \left(\alpha + \alpha_0 \right) \right\}$$

 Plot initial phase α₀ against time

typically drift
 30 - 90 mrad
 per 1 min. scan

Less concerning syst. errors

Laser position offset from IP (beam center)

→ not a concern,
 mirror actuators finely adjust
 to 1/10 of σlaser
 long.: Cz- pos > 99.5 %
 transv: Ct-pos ~ 100%

Polarization related errors Impacts contrast with intensity imbalance ^ half mirror possess 50% reflection rate only for pure S state adjust to S state by rotating λ /2 wave plate • > confirmed to be nearly pure S state • maybe remains Cpol ~ 98 %

Systematic errors : Fringe Tilt

$$\mathrm{transv}: \qquad \delta \varphi_t = \arctan\left(\frac{\Delta y}{2f \cdot \sin\left(\theta/2\right)}\right) \qquad \mathrm{long.}: \qquad \delta \varphi_z = \arctan\left(\frac{\Delta z}{2f}\right)$$

Table "tilt2": bias due to fringe tilt expected from alignment precisions of $(\Delta y, \Delta z) = (3 \text{ mm}, 1 \text{ mm})$

expectation from alignment precision	$8 \deg (f = 250 \text{ mm})$	$30 \deg (f = 300 \text{ mm})$	$174 \deg (f = 250 \text{ mm})$
$\delta \varphi_t \ (\Delta y \simeq 3 \text{ mm}) \ [\text{mrad}]$	85	19	6.0
$C_{t,tilt}$	95.4%	96.8%	95.3%
$\delta \varphi_z \ (\Delta z \simeq 1 \text{ mm}) \ [\text{mrad}]$	29	6.4	2.0
$C_{z,tilt}$	100%	99.8%	99.8%

aim for alignment precision (Δy , Δz) ~ (1-3 mm, 1 mm)

•Longitudinal tilt not a major concern •large σx^* (currently ~ 10 µm) impact tranv tilt

Evaluation from beam time data

evaluated using actual data.	$4 \deg (f = 250 \text{ mm})$	$8 \deg (f = 250 \text{ mm})$	$30 \deg (f = 300 \text{ mm})$
$\delta \varphi_t \ (\Delta y \simeq 3 \text{ mm}) \ [\text{mrad}]$	29	14	10
$C_{t,tilt}$	96.6%	96.8%	79.8%
$\delta \varphi_z \ (\Delta z \simeq 1 \text{ mm}) \text{ [mrad]}$	4	4	3.3
$C_{z,tilt}$	100%	100%	100%

date	notes	Beta	M/ Beam size
4/12	6 deg Seeder still very unstable	10 x 5	M ~ 0.4 1 micron
4/17	6 deg	10 x 5	M ~ 0.6 780 nm
4/19 -20	6 deg Exchanged seeder!! Tuned mirrors Now Fringe scans became more stable	10 x 1	M ~ 0.45 1 micron
	 30 deg issues with beam timing jumps Unstable beam current and orbit, tune resonance in DR multiknob tuning not able to reduce beam size 	10 x 1	~ 300 nm Difficult condition since M was small
4/26 -27	8 deg	10 x 1	M ~ 0.75 450 nm
	30 deg	10 x 1	M ~ 0.1 350 nm
	6 deg (system checkup)	10 x 1	M 0.5-0.7
	 Exchanged Beamlok PZT mount, flash lamps Laser system overall stable 		
5/16 - 18	7.3 deg Unstable beam current and orbit, tune resonance in DR	10 x 1	M : 0.25 – 0.45 Beam size > 850 nm

Systematic Errors estimated from actual beam time data

Current	M reduction	$\sigma_y^* \lesssim 300 \text{ nm}$	$\sigma_y^* \lesssim 300 \text{ nm}$	$\sigma_y^* \simeq 160 - 200 \text{ nm}$
status	factors	4 deg	8 deg	30 deg
polarization	$C_{pow-pol}$	$\sim 98\%$		
relative pos. jitter	$C_{rel-pos}$	> 95.3%	> 95.2%	> 92.9%>
laser path	z: $C_{z,pos}$	> 99.5%		
alignment	t: $C_{t,pos}$	$\sim 100\%$		
laser profile	t: C _{t,profile}	100 %	> 99.0%	> 99.9%
imbalance	z: C _{z,profile}			
Fringe tilt	t: $C_{t,tilt}$	96.6%	96.8%	79.8%
	z: $C_{z,tilt}$	100 %		
Total	$\prod_{i} C_i$	> 89.7%	> 88.9%	> 72.1%

Fringe tilt and phase jitters happened to be large for 30 deg scans

(now practicing more precise path alignment)

Even so was able to detect M at 30 deg $\rightarrow \sigma y^*$ was much smaller than 200 nm (??!!)

- total M reduction close to, but not agree with estimated upper limit C ~ 0.8
- Not adequate data to accurately evaluate all error types (ex:) Cpol > 98%, phase drift (few% ?)

largest syst. errors appear to be

- relative position jitter (phase jitter) \rightarrow feedback correction of beam position
- Fringe tilt: \rightarrow improve alignment, tune $\sigma * x$ smaller (also issues of rotated beam , coupling) effects

Syst. Errors for 174 deg mode

Small σy* sensitive to relative position jitter

	expected	actual evaluation
174 deg mode	$\sigma_y^* \simeq 40 \text{ nm}$, nominal beta optics	$\sigma_y^* \simeq 90 \text{ nm}$, 10 x 3 beta optics
	$\sigma_x^* \simeq 2.2 \ \mu \mathrm{m}, \ \sigma_{laser} \simeq 15 \ \mu \mathrm{m}$	$\sigma_x^* \simeq 11 \ \mu m, \ \sigma_{laser} \simeq 15 \ \mu m$
polarization	99.8% (*) 📕	adjusted to S polarization
$C_{pow-pol}$		ellipticity not measured recently
$C_{rel-pos}$	> 98.0%	
laser position alignment	$(\simeq 100\%, > 99.5\%)$	
$(C_{t,pos}, C_{z,pos})$	fine alignment of O($\sigma_{t,laser}$ /10)	using 10 nm res. mirror actuators
profile imbalance	(99,6%, 99.2%)	> 99.9%
$(C_{t,profile}, C_{z,profile})$	assuming 1:1.2 balance	
tilt : $(C_{t,tilt}, C_{z,tilt})$	$(> 99.9\%, \simeq 100\%)$ κ	nearly zero offset
C_{sphere}	$> 99.7\%^*$	
C_{grow}	99.7%	
C_{coh}	> 99.9%	
total $\prod_{i} C_i$	> 95.4	Fringe tilt should not
		be concern if
Some errors intrinsi	c to 174 deg mode	meet alignment precision
\rightarrow Special bardware		
- > Special naruware	upyraues (coming up)	

Expected performance and resolution

修士学位論文 2012

50

Vertical table

	Wavelength	532 nm (SHG)
Nd :YAG	Pulse Energy	1.4 J
Q-Switch laser	Peak power	164 MW
PRO350	Pulse Width	8 ns (FWHM)
Spectra Physics	\mathbf{f}_{rep}	6.25 Hz
	Line Width	$< 0.003 \text{ cm}^{-1}$
	Timing Stability	<0.5 ns
	Energy Stability	\pm 3%

X and Y actuators

horizontal

-- Piezo stage による位相制御

-- 回転ステージ、prism stage とmirror actuator で**各モードの光路を作る**

