Higgs/EWSB Summary

Keisuke Fujii (KEK)

1

Higgs/EWSB Sessions

7 Sessions altogether

Joint Higgs/BSM Session - DESY Auditorium (09:00-10:30)

time	[id] title	presenter
09:00	[46] Higgs physics with CMS	SAVIN, Alexander
09:30	[47] Higgs physics with ATLAS	ZANZI, Daniele
10:00	[48] Search for BSM Higgs in ATLAS	SIMONIELLO, Rosa
10:15	[49] Beyond Standard Model Higgs searches at CMS	WOLF, Roger

LHC

Higgs, EWSB - DESY Auditorium (11:00-13:00)

time	[id] title	presenter
11:00	[50] How well do we need to measure Higgs boson couplings?	RZEHAK, Heidi
11:25	[51] Higgs to tau tau branching ratio study in the ILC with ILD detector	KAWADA, Shin-ichi
11:50	[52] Measurement of the Higgs boson decay to tau leptons at a CLIC collider operating at 350 and 1400 GeV	Dr. MUENNICH, Astrid
12:10	[53] Measurement accuracy of Higgs branching ratio in ILC	Dr. ONO, Hiroaki
12:35	[54] SFitter: Higgs Couplings at the LHC and LC	PLEHN, Tilman

$H \rightarrow bb, cc, gg, \tau\tau, WW^*, \mu\mu$ Theoretical expectations

Joint Higgs/BSM Session - DESY Auditorium (14:30-16:00)

time	[id] title	presenter
14:30	[41] The status of constrained SUSY and implications for the Higgs boson	SARRAZIN, Bjorn
14:50	[42] Implications of SUSY and Higgs Searches for the ILC	HEINEMEYER, Sven
15:10	[43] SUSY strongly-coupled Higgs sector and electroweak baryogenesis	Mr. YAMADA, Toshifumi
15:30	[44] Higgs inflation in a radiative seesaw model	Mr. NABESHIMA, Takehiro
15:45	[45] The Higgs boson mixes with an SU(2) septet	Prof. TSUMURA, Koji

Higgs, EWSB - DESY Auditorium (16:30-18:00)

time	[id] title	presenter
16:30	[63] Search for invisible Higgs decays at the ILC	Dr. ISHIKAWA, Akimasa
16:55	[57] The Higgs ILC White paper	Dr. BARKLOW, Timothy
17:25	[58] Determination of the CP parity of Higgs bosons in their tau decay channels at the ILC	BERGE, Stefan

H→invisible, CP property

K.Fujii @ ECFA LCWS 2013

Join	t Higgs/Top Session - DESY Auditorium (11:00-13:00)	op Yukawa
time	[id] title	presenter
11:00	[267] Impact of m_t measurements on precision tests of the SM and the MSSM	HEINEMEYER, Sven
11:25	[67] yukawa top ILD -> Associated production of the Higgs boson with a top pair a the ILC	at TANABE, Tomohiko
11:50	[68] Measurement of the top Yukawa coupling at sqrt(s) = 1 TeV using the SiD detector	Dr. ROLOFF, Philipp
12:15	[69] Measurement of the top Yukawa coupling at a 1.4 TeV CLIC collider	REDFORD, Sophie
12:35	[70] Top anomalous magnetic moment and Higgs decays	LABUN, Lance

Higgs, EWSB - DESY Auditorium (14:00-15:30) Coupling meas. at CLIC

time	[id] title	presenter
14:00	[60] Measurement of the Higgs couplings to b- and c-quarks and to gluons at 350 GeV, 1.4 TeV and 3 TeV CLIC	Dr. LASTOVICKA, Tomas
14:25	[61] Measurement of the Higgs couplings to gauge bosons at CLIC	SICKING, Eva
14:50	[62] Measurement of the Higgs boson decay to muons at a CLIC collider operating at 1.4 and 3 TeV	BOZOVIC-JELISAVCIC, Ivanka
15:10	[56] Higgs Production from SUSY Decays at the LC	HEINEMEYER, Sven

Higgs, EWSB - DESY Auditorium (16:00-17:15)

Self-coupling

1	16:00	[64] Study of Higgs self-coupling at 500 GeV and 1 TeV at ILC	Dr. TIAN, Junping
1	16:20	[65] Higgs Self Coupling Analysis using the events containing H->WW* decay	Mr. KURATA, Masakazu
1	16:40	[66] Measurement of the Higgs self-coupling at 1.4 and 3 TeV	STRUBE, Jan Fridolf

3 joint sessions

- 2 with BSM (incl. 1 LHC session)
- 1 with top

29 talks

time [id] title

- 10 theory talks
- 19 exp. talks (incl. 4 LHC talks)

A lot of post DBD (ILC) / CDR (CLIC) analyses on going --> inputs to Snowmass process (Tim)

LHC

Higgs Results from CMS

• X(125): observed in different decay modes:

• $X \rightarrow ZZ^*$ (~7 σ), $\gamma\gamma$ (~4 σ), $\tau\tau$ (~3 σ), WW* which already allow nontrivial test of couplings

Alexander A. Savin

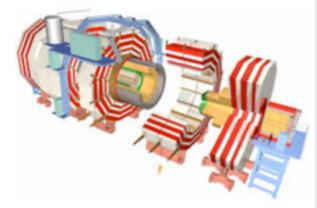
is = 7 TeV, L ≤ 5.1 fb⁻¹ vs = 8 TeV, L ≤ 19.6 fb

68% CI

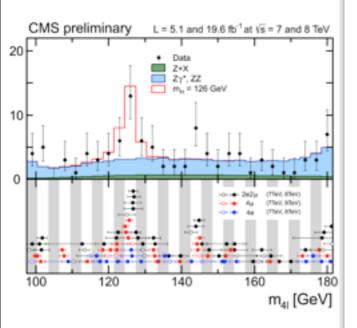
95% CL

2.5

2


parameter value

CMS Preliminary


0.5

 κ_2

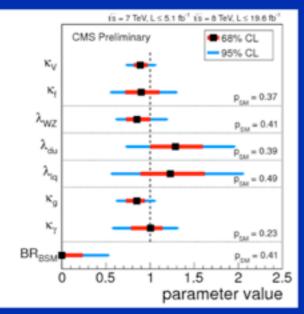
CMS

 $X \rightarrow ZZ^* \rightarrow 4I$

Deviations in the couplings in different models

68% CL

95% CL


P_{EM} = 0.78

 $\kappa_v \le 1$] $p_{res} = 0.88$

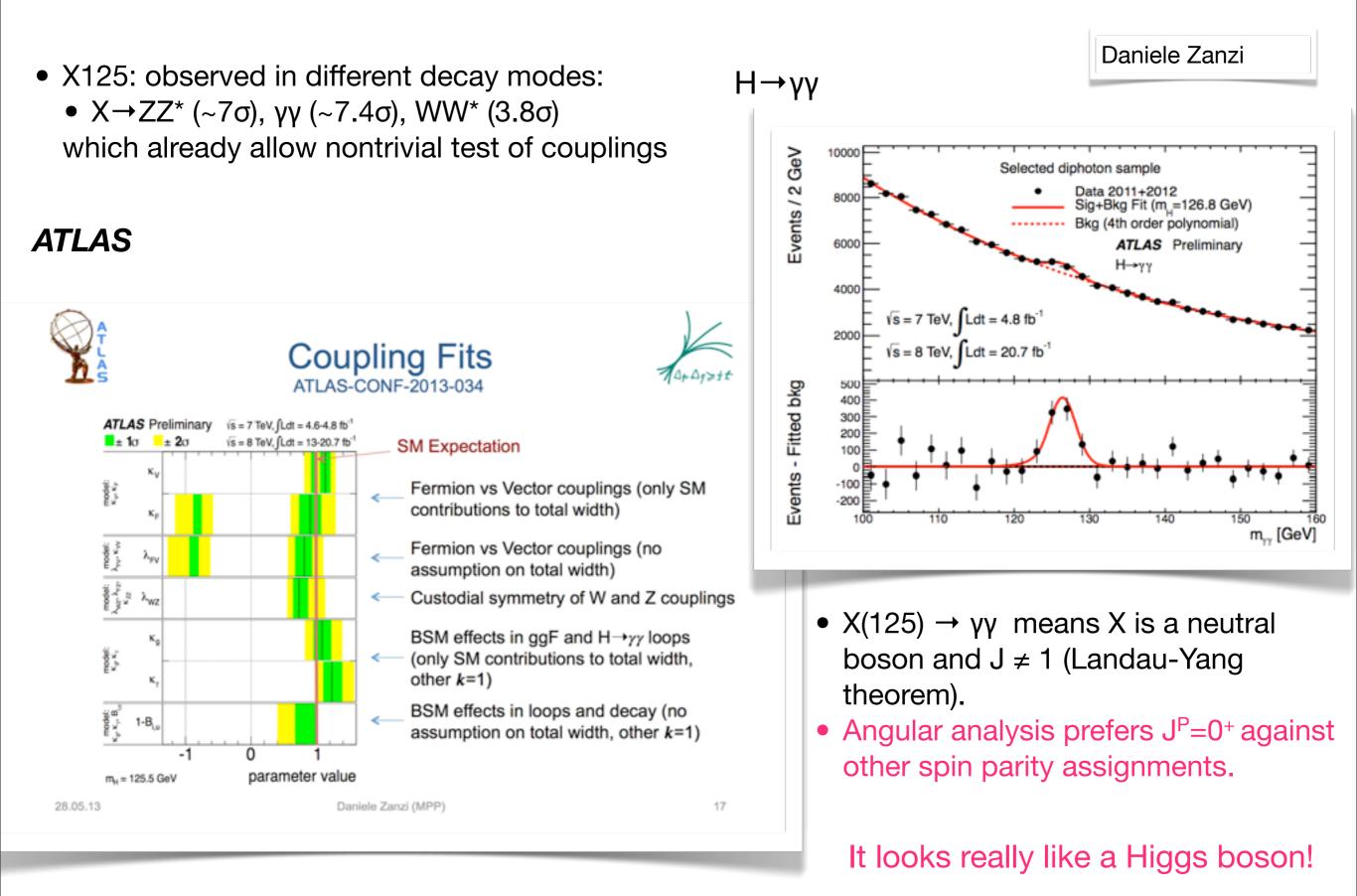
parameter value

CMS Preliminary

BR

Summary of the fits for deviations in the coupling for the LHC XS WG benchmark models Summary of the fits for deviations in the coupling for the generic six-parameter model including effective loop couplings

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

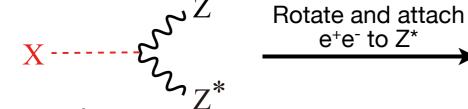

Summary of the fits for deviations in the coupling for the generic five-parameter model not effective loop couplings.

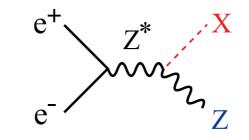
1.5

The current data do not show any statistically significant Anomalies with respect to the SM Higgs boson hypothesis.

Higgs Results from CMS – LC2013 – A.Savin, UW 28

Higgs Results from ATLAS

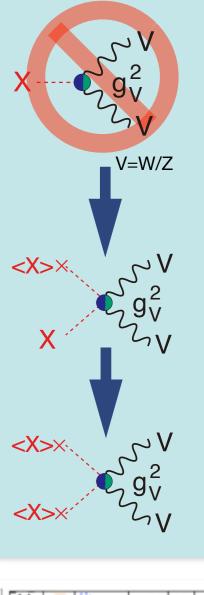

Since the July 4th, the world has changed!

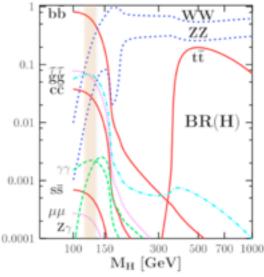

The discovery of the ~125 GeV boson at LHC could be called a quantum jump.

- $X(125) \rightarrow ZZ^*$, $WW^* \Rightarrow \exists XVV$ couplings: (V=W/Z: gauge bosons)
- There is no gauge coupling like XVV, only XXVV or XXV \Rightarrow XVV probably from XXVV with one X replaced by $\langle X \rangle \neq 0$, namely $\langle X \rangle XVV$
 - \Rightarrow There must be <X><X>VV, a mass term for V.
 - \Rightarrow X is at least part of the origin of the masses of V=W/Z.
 - \Rightarrow This is a great step forward but we need to know whether $\langle X \rangle$ saturates the SM vev = 246GeV.

e⁺e⁻ to Z*

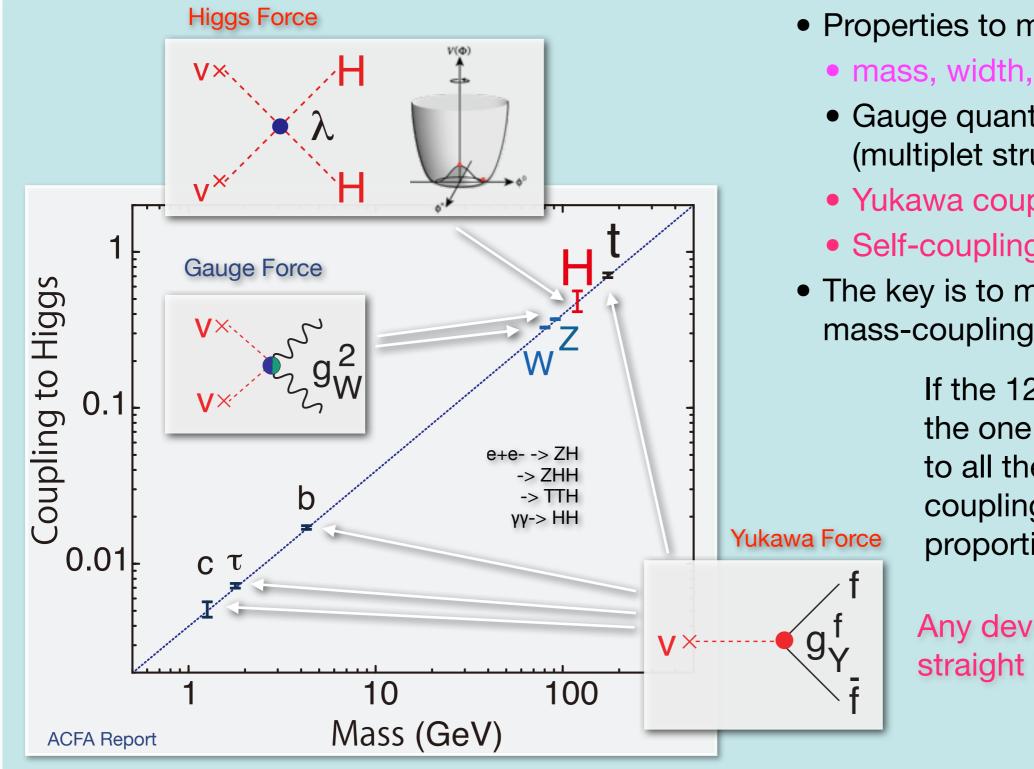
• X \rightarrow ZZ^{*} means, X can be produced via e⁺e⁻ \rightarrow Z^{*} \rightarrow ZX.





• By the same token,

 $X \rightarrow WW^*$ means, X can be produced via W fusion: $e^+e^- \rightarrow vvX$.


- So we now know that the major Higgs production mechanisms are indeed available at a LC \Rightarrow No lose theorem for the LC.
- ~125GeV is the best place for the LC, where variety of decay modes are accessible.
- We need to check this ~125GeV boson in detail to see if it has indeed all the required properties of the vacuum condensate.

What Properties to Measure?

The Key is the Mass-Coupling Relation

- Properties to measure are
 - mass, width, J^{PC}
 - Gauge quantum numbers (multiplet structure)
 - Yukawa couplings
 - Self-coupling
- The key is to measure the mass-coupling relation

If the 125GeV boson is the one to give masses to all the SM particles, coupling should be proportional to mass.

Any deviation from the straight line signals BSM!

The Higgs is a window to BSM physics!

Our Mission = Bottom-up Model-Independent Reconstruction of the EWSB Sector

through Precision Higgs Measurements

- Multiplet structure :
 - Additional singlet?
 - Additional doublet?
 - Additional triplet?
- Underlying dynamics :
 - Weakly interacting or strongly interacting?
 = elementary or composite ?
- Relations to other HEP questions :
 - DM
 - EW baryogenesis
 - neutrino mass
 - inflation?

For the precision we need a 500 GeV LC.

T

There are many possibilities!

Different models predict different deviation patterns --> Fingerprinting!

Model	μ	au	b	С	t	g_V
Singlet mixing	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
2HDM-I	↓	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
2HDM-II (SUSY)	1	↑	↑	\downarrow	\downarrow	\downarrow
2HDM-X (Lepton-specific)	1	1	\downarrow	\downarrow	\downarrow	\downarrow
2HDM-Y (Flipped)	\downarrow	\downarrow	1	\downarrow	\downarrow	\downarrow

Conclusion

How large can the maximal deviations from the SM Higgs couplings be if no new physics is discovered by the LHC?

Heidi Rzehak

The answer in the context of 3 different models:

	$ \Delta hVV $	$ \Delta h \bar{t} t $	$ \Delta h \bar{b} b $	$ \Delta hhh $
Mixed-in Singlet	6%	6%	6%	18%
Composite Higgs	8%	tens of %	tens of %	tens of %
MSSM	< 1%	3%	10%, 100%	2%, 15%
			$\tan \beta > 20$ no superpartn	all other ers cases
well do we need to measure the Higgs	boson couplings?	Heidi Rzeha	k Linear Collider W	forkshop, 28 May 2013

Why 250-500 GeV?

Three well known thresholds

ZH @ 250 GeV (~Mz+MH+20GeV) :

- Higgs mass, width, J^{PC}
- Gauge quantum numbers
- Absolute measurement of HZZ coupling (recoil mass) -> couplings to H (other than top)
- BR(h->VV,qq,II,invisible) : V=W/Z(direct), g, γ (loop)

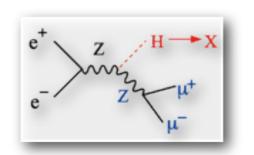
ttbar @ 340-350GeV (~2mt) : ZH meas. Is also possible

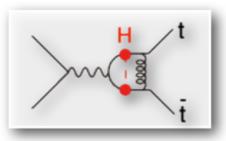
- Threshold scan --> theoretically clean mt measurement: $\Delta m_t(\overline{MS}) \simeq 100 \text{ MeV}$ --> test stability of the SM vacuum
 - --> indirect meas. of top Yukawa coupling
- A_{FB}, Top momentum measurements
- Form factor measurements

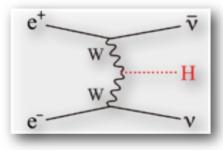
 $\gamma \, \gamma \rightarrow HH$ @ 350GeV possibility

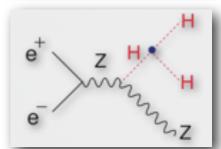
vvH @ 350 - 500GeV :

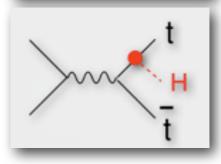
HWW coupling -> total width --> absolute normalization of Higgs couplings


ZHH @ 500GeV (~MZ+2MH+170GeV) :


Prod. cross section attains its maximum at around 500GeV -> Higgs self-coupling


ttbarH @ 500GeV (~2mt+MH+30GeV) :


- Prod. cross section becomes maximum at around 800GeV.
- QCD threshold correction enhances the cross section -> top Yukawa measurable at 500GeV concurrently with the self-coupling


We can complete the mass-coupling plot at ~500GeV!

BR and Coupling Measurements

H→bb,cc,gg,WW*,ττ,μμ

ILD

Hiroaki Ono

Current Higgs BR summary (ΔσBR/σBR)

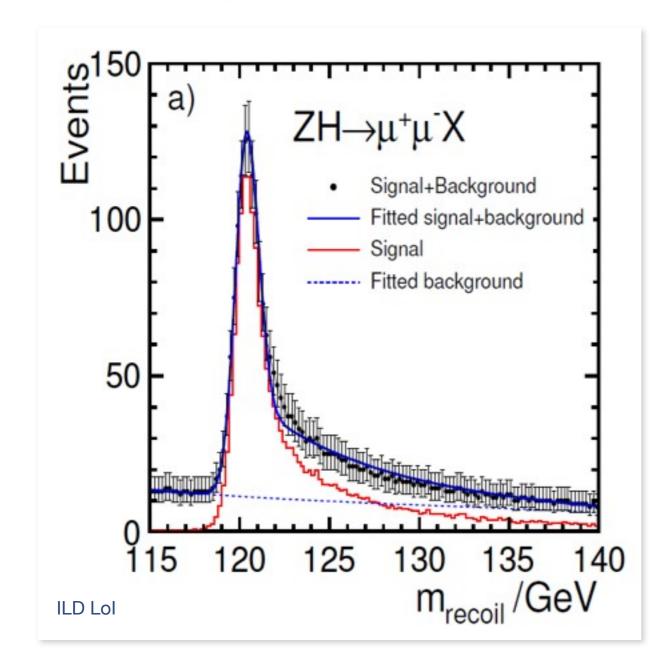
E _{cm} (GeV)	250	350	500	1000	Comn	nent
Pol (e-,e+)	(-0.8,+0.3)	(-0.8,+0.3)	(-0.8,+0.3)	(-0.8,+0.2)		
Lumi (fb ⁻¹)	250	250	500	1000		
Mh (GeV)	120	120	120	125		
h→bb	1.0%	1.0%	0.57%	0.39%	Eur. Phys. LC-REP-20	J. C 73, 2343 (2013) 013-005
h→cc	6.9%	6.2%	5.2%	3.9%	Eur. Phys. J. C 73, 2343 (201 LC-REP-2013-005 Eur. Phys. J. C 73, 2343 (201 LC-REP-2013-005 LC-REP-2013-006 250, 500 GeV to be prepared	
h→gg	8.5%	7.3%	5.0%	2.8%		
h→WW*	8.1%		3.0%	2.5%		
h→π	3.5%				LC-RE	P-2013-001
h→µµ				31%	LC-RE	P-2013-006
F	Re-do with i	new 125 G	eV full simu	lation sam	ples	
May 28 2013 ECFA 2013 @ DESY Higgs/EWSB session 12					12	

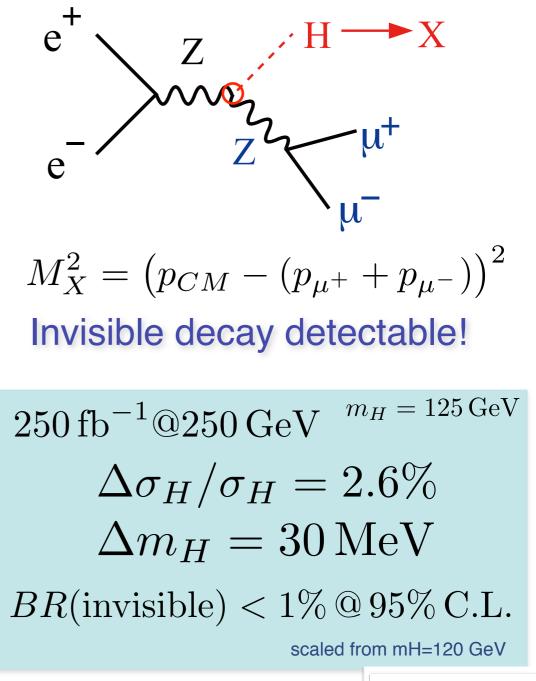
SiD results are similar.

What we measure is not BR itself but σxBR .

To extract BR from σxBR , we need σ from the recoil mass measurement.

Shin-ichi Kawada


Summa	0							
	ary &	Next Plan						
We evaluated the precision of the branching ratio of $H \rightarrow \tau \tau$ mode with the ILD full detector simulation.								
scaled results to 125 GeV								
$\sqrt{s} = 250 \text{ GeV}, \ M_H = 125 \text{ GeV}, \ \text{Br}(H \to \tau\tau) = 6.32 \%,$ $\int L dt = 250 \text{ fb}^{-1}, \ P(e^-, e^+) = (-0.8, +0.3)$								
precision	precision : $\frac{\Delta(\sigma \cdot Br)}{(\sigma \cdot Br)} = 4.1\%$							
Next : Analysis with samples with latest simulation tools & $M_H = 125 \text{ GeV}$ ($\sqrt{s} = 250 \text{ GeV}$, 350 GeV, 500 GeV, 1 TeV) ECFA LC 2013 @ DESY (2013/May/28) 19								
Cross Section Results								
		Astrid Mue	ennich					
SLIC 350 GeV mh=126GeV		Astrid Mue 1.4 TeV mh=120GeV	ennich					
CLIC 350 GeV	312 529 150 60% 67% 6.9% 6.2%	1.4 TeV	ennich 1227 2238 1620 55% 43% 4.3% 3.7%					

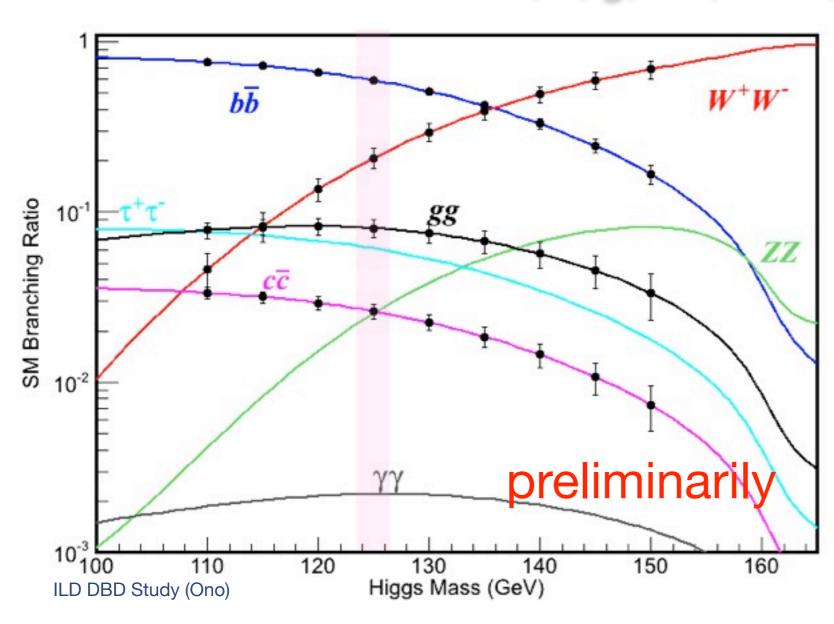

A. Münnich H -

Recoil Mass Measurement

The flagship measurement of a LC

The best place to do this recoil mass measurement is at 250 GeV! Recoil Mass $^+$

Akimasa Ishikawa


Model-independent absolute measurement of σ_{ZH} (the HZZ coupling) K.Fujii @ ECFA LCWS 2013

Branching Ratio Measurements

for b, c, g, tau, WW*, ...

DBD Physics Chap.

 $250 \, \text{fb}^{-1}$ @250 GeV

 $m_H = 125 \,\mathrm{GeV}$ scaled from mH=120 GeV @250GeV ZH process Int. Lumi. [fb⁻¹] 250 2.6% $\Delta\sigma/\sigma$ decay mode $\Delta\sigma Br/\sigma Br$ $H \rightarrow bb$ 1.1% $H \rightarrow cc$ 7.4% $H \rightarrow gg$ 9.1% $H \rightarrow WW^*$ 7.4% $H \rightarrow \tau \tau$ 4.2% $H \rightarrow ZZ^*$ 19% 29-38% $H \rightarrow \gamma \gamma$ preliminarily

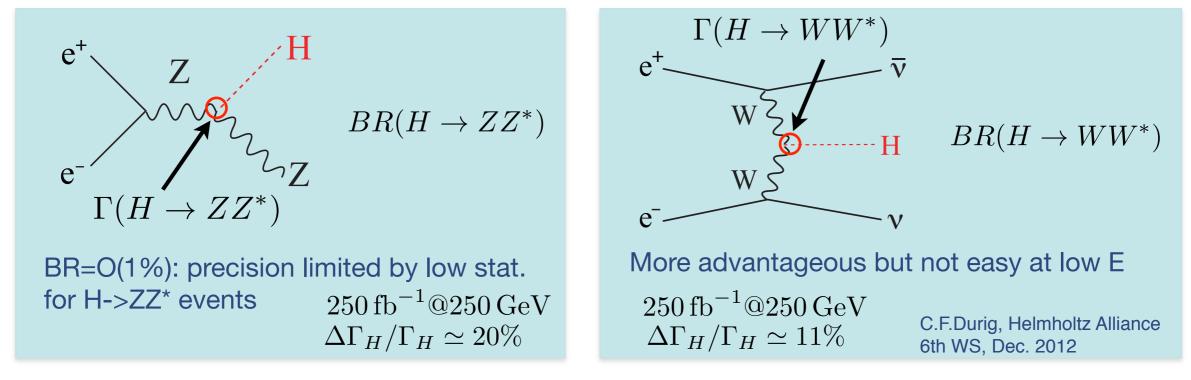
What we measure is not BR itself but $\sigma x BR$.

To extract BR from σxBR , we need σ from the recoil mass measurement.

- --> $\Delta\sigma/\sigma$ =2.6% eventually limits the BR measurements.
- --> If we want to improve this, we need more data at 250GeV.

We need to seriously think about luminosity upgrade scenario (c.f. Tim Barklow) K.Fujii @ ECFA LCWS 2013

Total Width and Coupling Extraction One of the major advantages of the LC


To extract couplings from BRs, we need the total width:

$$g_{HAA}^2 \propto \Gamma(H \to AA) = \Gamma_H \cdot BR(H \to AA)$$

To determine the total width, we need at least one partial width and corresponding BR:

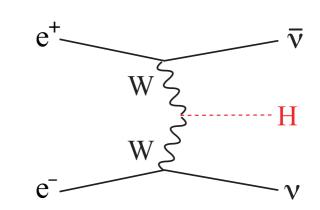
$$\Gamma_H = \Gamma(H \to AA) / BR(H \to AA)$$

In principle, we can use A=Z, or W for which we can measure both the BRs and the couplings:

LC 500 and Higher

Width and BR Measurements at 500 GeV

Addition of 500GeV data to 250GeV data

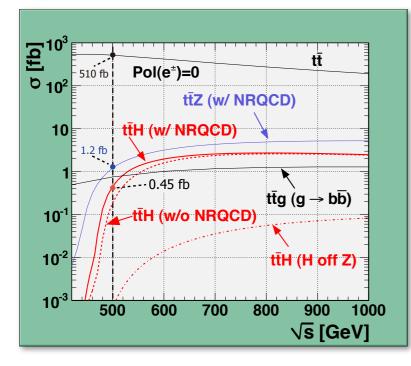

E _{cm} [GeV]	E _{cm} [GeV] independent measurements	
	σ_{ZH}	2.6%
	$\sigma_{ZH} \cdot Br(H \to b\bar{b})$	1.1%
250	$\sigma_{ZH} \cdot Br(H \to c\bar{c})$	7.4%
	$\sigma_{ZH} \cdot Br(H \to gg)$	9.1%
	$\sigma_{ZH} \cdot Br(H \to WW^*)$	6.4%
	$\sigma_{ZH} \cdot Br(H \to b\bar{b})$	1.8%
	$\sigma_{ZH} \cdot Br(H \to c\bar{c})$	12%
	$\sigma_{ZH} \cdot Br(H \to gg)$	14%
500	$\sigma_{\nu\bar{\nu}H} \cdot Br(H \to b\bar{b})$	0.66%
	$\sigma_{\nu\bar{\nu}H} \cdot Br(H \to c\bar{c})$	6.2%
	$\sigma_{\nu\bar{\nu}H} \cdot Br(H \to gg)$	4.1%
	$\sigma_{\nu\bar{\nu}H} \cdot Br(H \to WW^*)$	2.6%

ILD DBD Full Simulation Study

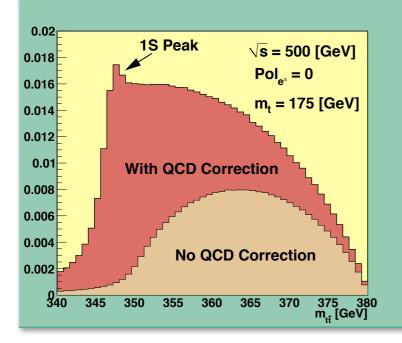
 $250 \,\text{fb}^{-1}@250 \,\text{GeV} +500 \,\text{fb}^{-1}@500 \,\text{GeV}$ $m_H = 125 \,\text{GeV}$

K.Fujii @ ECFA LCWS 2013

preliminarily

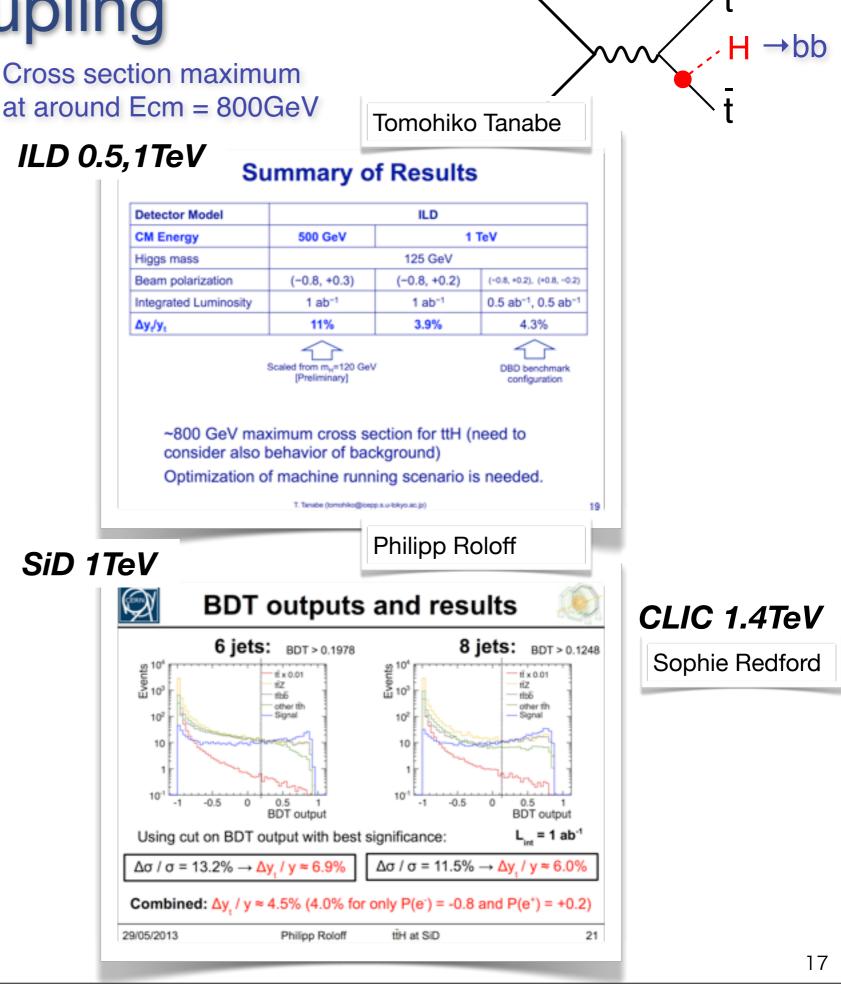

comes in as a powerful tool!

 $\Delta \Gamma_H / \Gamma_H \simeq 6\%$

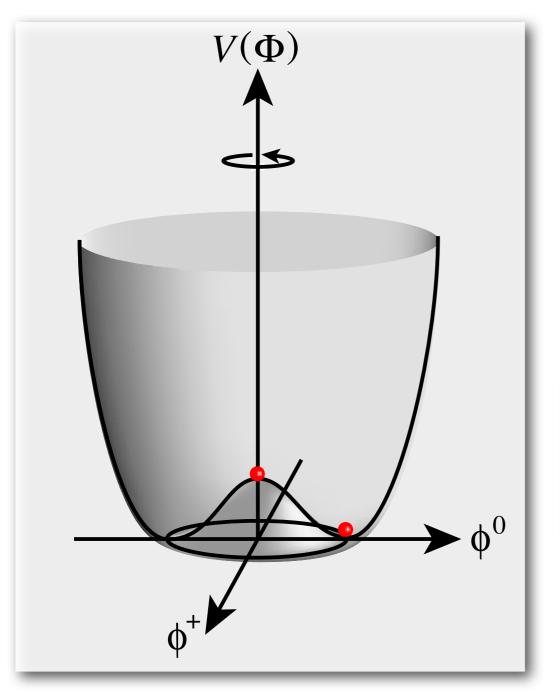

Mode		∆BR/BR
	bb	2.7 (2.7)%
	СС	<mark>5.2</mark> (7.8)%
	gg	4.5 (9.5)%
	WW*	<mark>3.6</mark> (6.9)%

The numbers in the parentheses are as of $250\,{\rm fb}^{-1}@250\,{\rm GeV}$

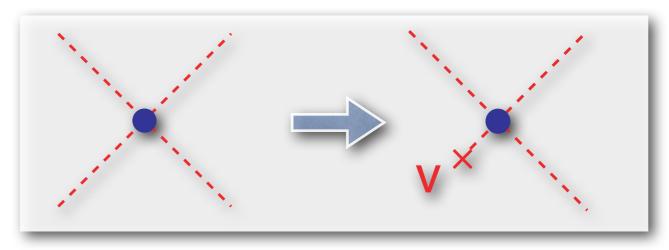
Top Yukawa Coupling



Ecm = 500GeV: near threshold

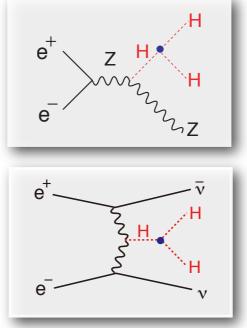

A factor of 2 enhancement from QCD bound-state effects

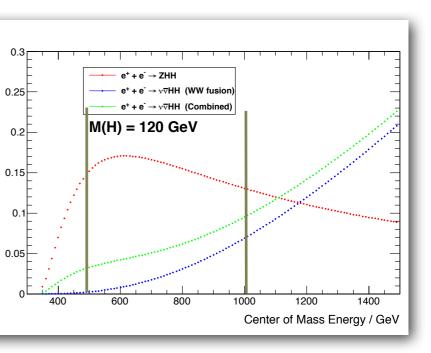
Notice $\sigma(500+20GeV)/\sigma(500GeV) \sim 2$ Moving up a little bit helps significantly!



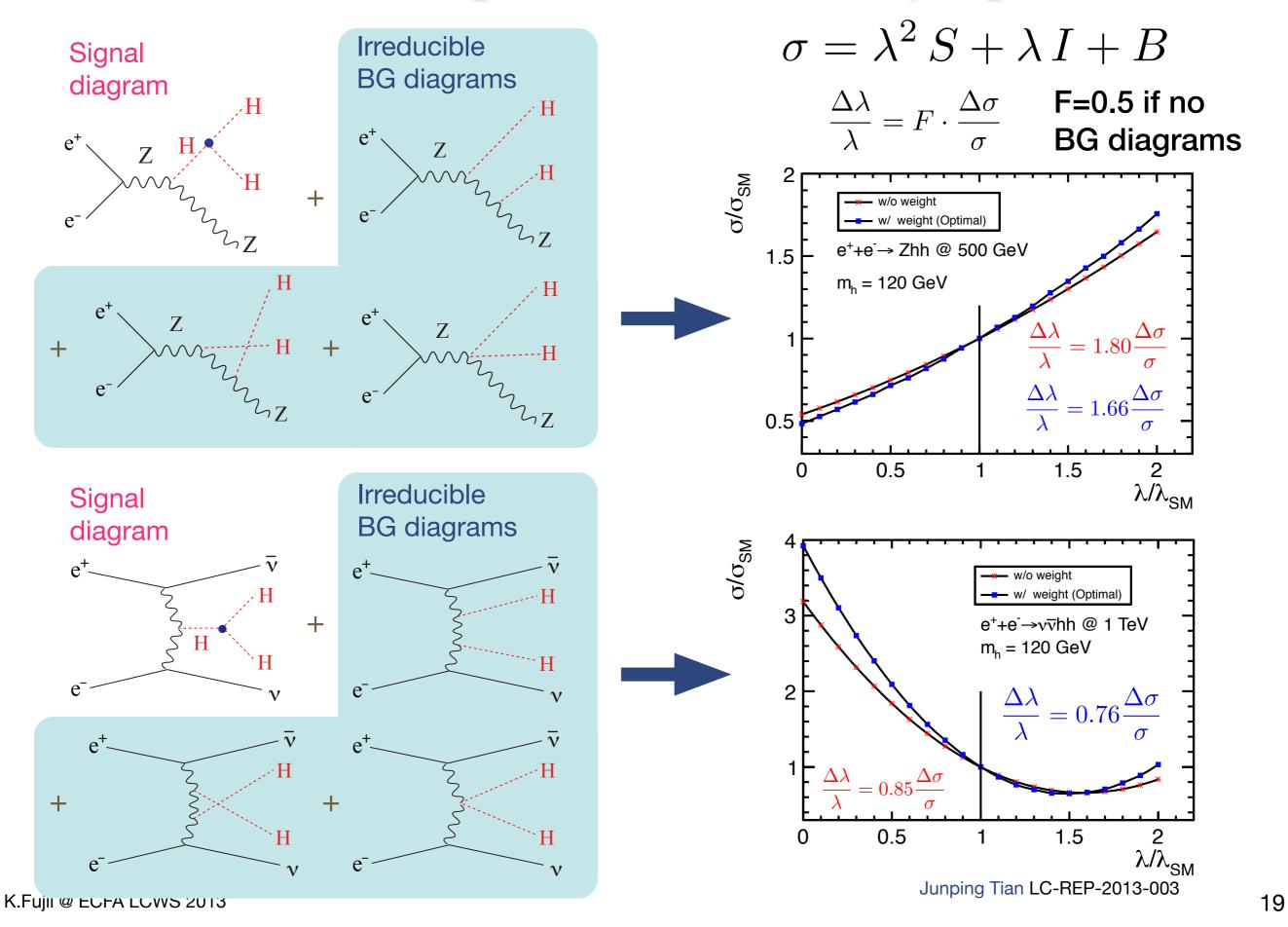
Higgs Self-coupling

What force makes the Higgs condense in the vacuum?




We need to measure the Higgs self-coupling

= We need to measure the shape of the Higgs potential


Cross Section / fb

The measurement is very difficult even at a LC.

The Problem : BG diagrams dilute self-coupling contribution

Current State of the Art

ILD: HH→bbbb

pro	Junping Tian			
effect of positron polarisation				ns P(e·) = -0.8
	P(e+)	0	+0.3 (+0.2)	+0.6 (+0.4)
	ZHH @ 500 GeV	50%	44%	40%
	vvHH @ 1 TeV	20%	18%	16%

ILC Luminosity Upgrade Tim Barklow's talk

3.2 ab⁻¹ ~ 6 years @ 500 GeV; 5 ab⁻¹ ~ 6 years @ 1 TeV

	TDR-Upgrade
ZHH @ 500 GeV	44%> 35%
vvHH @ 1 TeV	18%>11%

ILD: HH →bbWW*

Masakazu Kurata

- Higgs self coupling analysis using the events with H→WW* is ongoing.
 - · Multi variate analysis to reject the backgrounds
 - Unfortunately, c jet analysis doesn't give significant contribution
 - Total sensitivity is ~1.4σ

CLIC: HH→bbbb

Ways to increase the number of signal events

Polarization significantly increases the signal cross section e.g. from 0.63 fb (unpolarized) to 1.37 fb (-80%, +30%)

collision energy Polarization e ⁻ /e ⁺	√s = 1.4 TeV unpolarized		$\sqrt{s} = 3.0 \text{ TeV}$ unpolarized	√s = 3.0 TeV -80% / +30%
Δ σ(ΗΗνν)	≈ 22%	≈ 18%	≈ 10%	≈7%
$\Delta \lambda_{HHH}$	≈ 28%	≈ 22%	≈ 16%	≈ 11%

Numbers with polarized beams obtained by scaling signal and background cross sections, ignoring polarization-dependent changes to kinematic properties.

all cross section values: mH = 120 GeV

Other Channels contributing

at 1.4 TeV: ZHH cross section ~50% of HHvv at 3.0 TeV: ZHH cross section < 10% of HHvv

Z boson fusion diagrams (electrons in final state) < 15% of W boson fusion cross section

Note:

 $\label{eq:m_H} \begin{array}{l} m_{H} = 126 \; \text{GeV} \; \text{results in slightly} \\ \text{smaller signal cross sections} \\ \sigma(\text{HHvv}) = 0.15 \; \text{fb} \; \text{at} \; 1.4 \; \text{TeV} \\ \sigma(\text{HHvv}) = 0.59 \; \text{fb} \; \text{at} \; 3.0 \; \text{TeV} \\ \text{both with unpolarized beams} \end{array}$

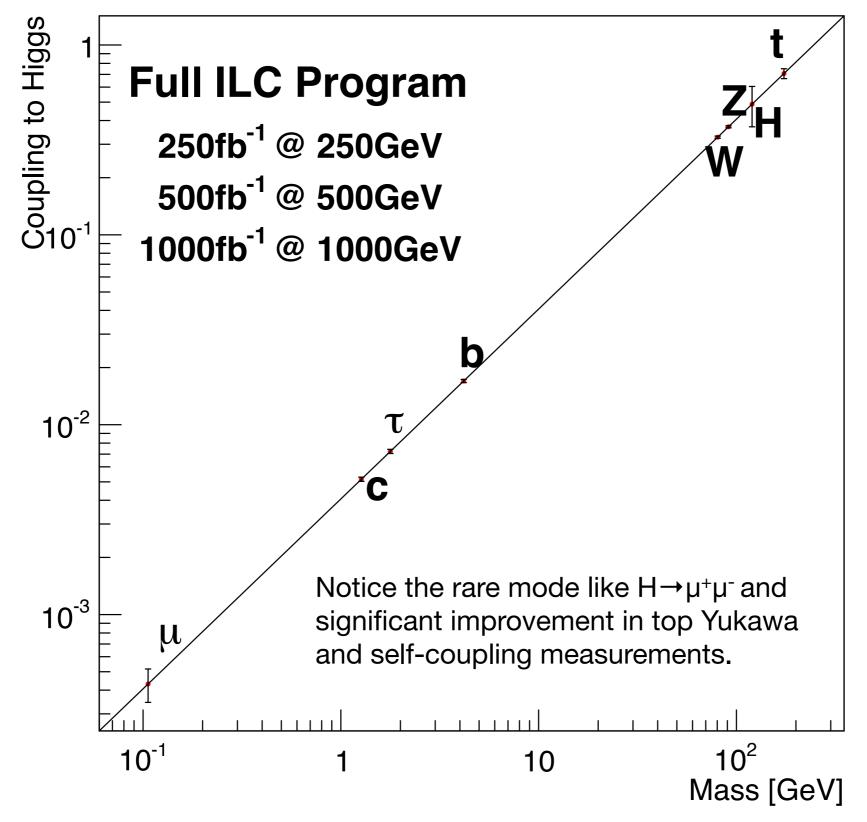
Jan Strube

20

ILC 250+500+1000

Model-independent Global Fit for Couplings Canonical ILC program $(M_H = 125 \text{ GeV})$

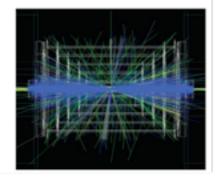
250 GeV: 250 fb⁻¹
500 GeV: 500 fb⁻¹
1 TeV: 1000 fb⁻¹


P(e-,e+)=(-0.8,+0.3) @ 250, 500 GeV

P(e-,e+)=(-0.8,+0.2) @ 1 TeV

coupling	250 GeV	250 GeV + 500 GeV	250 GeV + 500 GeV + 1 TeV
HZZ	1.3%	1.3%	1.3%
HWW	4.8%	1.4%	1.4%
Hbb	5.3%	1.8%	1.5%
Hcc	6.5%	2.9%	2.0%
Hgg	7.0%	2.5%	1.8%
Ηττ	5.7%	2.5%	2.0%
Ηγγ	25%	12%	5.2%
Ημμ	-	-	16%
Γ_0	11%	5.9%	5.6%
Htt	-	16%	3.8%
HHH	-	104%	26%

Mass Coupling Relation


After Canonical ILC Program

H→bb,cc,gg,WW*,ττ,μμ

Tomas Lastovicka THE CLIC ACCELERATOR ENVIRONMENT 350 (500) GeV 1.4 TeV 3 TeV Center of mass energy 2 ab⁻¹ Accumulated luminosity 500 fb⁻¹ 1.5 ab⁻¹ 0.5 ns Bunch spacing 0.5 ns 0.5 ns Bunches per train 354 312 312 50 Hz 50 Hz 50 Hz Train repetition rate yy → hadrons per BX 0.3 1.3 3.2

- Challenging environment
- γγ overlay → 19TeV visible energy @ 3 TeV
- Reduced by a factor of 16 in 10ns readout window.
- Requires to employ "LHC-style" jet reconstruction algorithms (typically FastJet k_T).

CLIC

Page • 3

SUMMARY

The statistical accuracy of $\sigma(e^+e^- \rightarrow Hv_ev_e) \times BR(H \rightarrow XX)$ could be determined to

X = b: 0.3 % at 1.4 TeV	and to 0.22 %	at 3 TeV.
X = c: 2.9 % at 1.4 TeV	and to 2.7 %	at 3 TeV.
X = g: 1.8 % at 1.4 TeV	and to 1.8 %	at 3 TeV.

for $m_{\rm H}$ = 126 GeV and accumulated luminosities of 1.5 $ab^{\cdot1}$ and 2 $ab^{\cdot1}$ for 1.4 TeV and 3 TeV, respectively.

The study was performed with full simulation and reconstruction in CLIC_SiD detector, realistic beam spectrum, ISR, yy overlay... and with unpolarized beams.

Analysis at 350 GeV is in progress.

Page • 24

K.Fujii @ ECFA LCWS 2013

Astrid Muennich

=126GeV		mh=12	20GeV	
350 GeV		1	.4 TeV	
Cianal quanta	312	Cignel events		1227
Signal events (807>0.08)		Signal events Total signal e		2238
Total signal events Background events (80T>0.08)	529 150		events (BDT>0.05)	
Signal efficiency	60%	Signal efficie		55%
Signal purity	67%	Signal purity	ncy	43%
$\sqrt{S+B}/S$ (Method 1)	6.9%	$\sqrt{S+B}/S$ (N	(ethod 1)	4.3%
$\sqrt{S+B}/S$ (Method 2)	6.2%		<i>r</i>	3.7%
Method 2 has a slight adva error and method 2 can use	-			
			1	
New method (method 2	2) to uti	lize all the B	DT bins	
A	A second seco	U ee		18
	. Münnich	$H \to \tau\tau$		
	CINGRIDUI	n - n		
	CMUILUI			
			Ev	va Sic
ummary: Higgs Coupli	Summary			va Sic
ummary: Higgs Coupli	summary ngs to	Gauge Boso		va Sic
ummary: Higgs Coupli • Higgs boson production in W	summary ngs to	Gauge Boso		va Sic
 Higgs boson production in W (1) H → WW* at 350 GeV 	ngs to '+W ⁻ -fusio and 1.4 Te	Gauge Boso		va Sic
• Higgs boson production in W (1) $H \rightarrow WW^*$ at 350 GeV = • Analysis in progress	ngs to '+W ⁻ -fusio and 1.4 Te	Gauge Bosc	ons at CLIC	va Sic
 Higgs boson production in W (1) H → WW* at 350 GeV 	ngs to "+W fusio and 1.4 Te ³	Gauge Bosc on V and fully hadronic f	ons at CLIC	va Sic
 Higgs boson production in W (1) H → WW* at 350 GeV a Analysis in progress Study semi-leptonic 	ngs to "+W fusio and 1.4 Te ³ final state a ariables for	Gauge Bosc on V and fully hadronic f signal/background	ons at CLIC	va Sic
 Higgs boson production in W (1) H → WW* at 350 GeV Analysis in progress Study semi-leptonic Identify kinematic v Simulate additional 	ngs to "+W fusio and 1.4 Te" final state a ariables for relevant bac	Gauge Bosc on V and fully hadronic f signal/background	ons at CLIC	va Sic
 Higgs boson production in W (1) H → WW* at 350 GeV Analysis in progress Study semi-leptonic Identify kinematic v Simulate additional (2) H → γγ measured at 1.4 	ngs to "+Wfusion and 1.4 Te" final state ariables for relevant back 4 TeV	Gauge Bosc on V and fully hadronic f signal/background ckground channels	inal state classification	va Sic
 Higgs boson production in W (1) H → WW* at 350 GeV Analysis in progress Study semi-leptonic Identify kinematic v Simulate additional 	ngs to "+Wfusion and 1.4 Te" final state ariables for relevant back 4 TeV Uncertainty	Gauge Bosc on V and fully hadronic f signal/background ckground channels	inal state classification	va Sic
 Higgs boson production in W H → WW* at 350 GeV i Analysis in progress Study semi-leptonic Identify kinematic vi Simulate additional H → γγ measured at 1.4 Preliminary results: σ_{e⁺e⁻→Hv0} × BR_{H→1} Towards final results 	Summary ngs to "+ W ⁻ -fusio and 1.4 Te ¹ final state a relevant bac trelevant bac 4 TeV Uncertainty γ is 17 %	Gauge Bosc on V and fully hadronic f signal/background ckground channels of measurement of	inal state classification	va Sic
 Higgs boson production in W H → WW* at 350 GeV i Analysis in progress Study semi-leptonic Identify kinematic vi Simulate additional H → γγ measured at 1.4 Preliminary results: σ_{e⁺e⁻→Hvp} × BR_{H→y} Towards final results - Increase number of 	Summary ngs to "+ W ⁻ -fusio and 1.4 Te ¹ final state a ariables for relevant back 4 TeV Uncertainty γ is 17 % s: f simulated	Gauge Bosc on V and fully hadronic f signal/background ckground channels of measurement of events	inal state classification	va Sic
 Higgs boson production in W H → WW* at 350 GeV i Analysis in progress Study semi-leptonic Identify kinematic vi Simulate additional H → γγ measured at 1.4 Preliminary results:	Summary ngs to "+ W ⁻ -fusio and 1.4 Te ¹ final state a ariables for relevant back 4 TeV Uncertainty γ is 17 % s: f simulated	Gauge Bosc on V and fully hadronic f signal/background ckground channels of measurement of events	inal state classification	va Sic
 Higgs boson production in W H → WW* at 350 GeV i Analysis in progress Study semi-leptonic Identify kinematic vi Simulate additional H → γγ measured at 1.4 Preliminary results: σ_{e⁺e⁻→Hvp} × BR_{H→y} Towards final results - Increase number of 	ngs to "+W fusio and 1.4 Te ³ final state : ariables for relevant bac 4 TeV Uncertainty γγ is 17 % s: f simulated inematic var	Gauge Bosc on V and fully hadronic f signal/background ckground channels of measurement of events	inal state classification	va Sic
 Higgs boson production in W H → WW* at 350 GeV a Analysis in progress Study semi-leptonic Identify kinematic va Identify kinematic va	Summary ngs to "+W -fusio and 1.4 Te ³ final state a ariables for relevant bac 4 TeV Uncertainty γ is 17 % s: f simulated inematic var	Gauge Bosc on V and fully hadronic f signal/background ckground channels of measurement of events	inal state classification	va Sic
 Higgs boson production in W H → WW* at 350 GeV Analysis in progress Study semi-leptonic Identify kinematic vi Simulate additional H → γγ measured at 1.4 Preliminary results: σ_{e⁺e⁻→Hvv}×BR_{H→y} Towards final results Increase number of - Study additional ki H → Z⁰γ measured at 1 Analysis in progress Study quark, e, and 	Summary ngs to '+W -fusio and 1.4 Te' final state a ariables for relevant back 4 TeV Uncertainty γ is 17 % s: f simulated inematic var 1.4 TeV	Gauge Bosc on V and fully hadronic f signal/background ckground channels of measurement of events riables for the multi	ons at CLIC	va Sic
 Higgs boson production in W H → WW* at 350 GeV Analysis in progress Study semi-leptonic Identify kinematic vi Simulate additional H → γγ measured at 1.4 Preliminary results: σ_{e⁺e⁻→Hvv}×BR_{H→y} Towards final results: - Increase number of - Study additional ki H → Z⁰γ measured at 1 Analysis in progress Study quark, e, and Identify kinematic vi 	Summary ngs to "+W -fusio and 1.4 Te ³ final state a ariables for relevant bas 4 TeV Uncertainty γ is 17 % s: f simulated inematic var 1.4 TeV	Gauge Bosc on V and fully hadronic f signal/background ckground channels of measurement of events fiables for the multi signal/background	ons at CLIC	va Sic
 Higgs boson production in W H → WW* at 350 GeV Analysis in progress Study semi-leptonic Identify kinematic vi Simulate additional H → γγ measured at 1.4 Preliminary results: σ_{e⁺e⁻→Hvp} × BR_{H→γ} Towards final results Increase number of Study additional ki H → Z⁰γ measured at 1 Analysis in progress Study quark, e, and 	Summary ngs to "+W -fusio and 1.4 Te ³ final state a ariables for relevant bas 4 TeV Uncertainty γ is 17 % s: f simulated inematic var 1.4 TeV	Gauge Bosc on V and fully hadronic f signal/background ckground channels of measurement of events fiables for the multi signal/background	ons at CLIC	va Sic

24

LHC + LC

Higgs Couplings

Tilman Plehn

Channels

SFitter

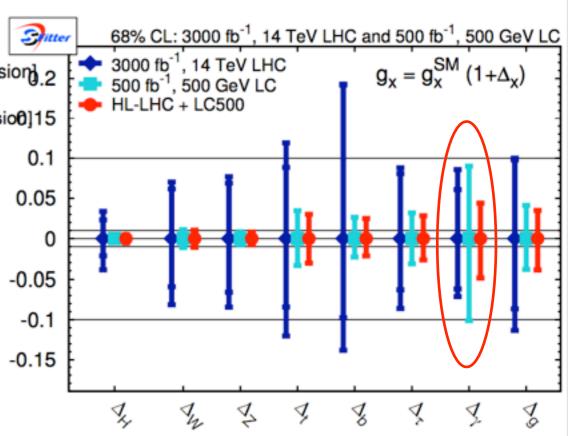
Higgs couplings

Anomalous couplings

Higgs couplings

LHC including Moriond/Aspen data [SFitter: Klute, Lafaye, TP, Rauch, Zerwas]

- focus SM-like [secondary solutions possible]
- six couplings and ratios from data
 g_b from width
 g_q vs *g_t* not yet possible


[similar: Ellis etal, Djouadi etal, Strumia etal, Grojean etal]

- poor man's analyses: $\Delta_H, \Delta_V, \Delta_f$
- Tevatron $H \rightarrow b\bar{b}$ with little impact

Future dinosaurs

- LHC extrapolations unclear [SFitter version].2
- theory extrapolations tricky [SFitter versio0]15
- ILC case obvious [500 GeV for now]
- interplay in loop-induced couplings
- $t\bar{t}H$ important at LHC and ILC

Conclusions

- The primary goal for the next decades is to uncover the secret of the EW symmetry breaking. This will open up a window to BSM and set the energy scale for the E-frontier machine that will follow LHC and ILC 500.
- Probably LHC will hit systematic limits at O(5-10%) for most of σ×Br measurements, being not enough to see the BSM effects if we are in the decoupling regime.
 To achieve the primary goal we hence need a 500 GeV LC for self-contained precision Higgs studies to complete the mass-coupling plot
 - starting from $e^+e^- \rightarrow ZH$ at Ecm = 250GeV,
 - then ttbar at around 350GeV,
 - and then ZHH and ttbarH at 500GeV.
- The LC to cover up to 500 GeV is an ideal machine to carry out this mission (regardless of BSM scenarios) and we can do this with staging starting from 250GeV. We may need more data depending on the size of the deviation. Lumi-upgrade possibility should be always kept in our scope.
- If we are lucky, some extra Higgs boson or some other new particle might be within reach already at LC 500. Let's hope that the upgraded LHC will make another great discovery in the next run. (Note: Sven discussed SUSY decays to Higgs.)
- If not, we will most probably need the energy scale information from the precision Higgs studies. Guided by the energy scale information, we will go hunt direct BSM signals with a new machine, if necessary.

Backup

HL-ILC ?

See Tim Barklow's talk

K.Fujii @ ECFA LCWS 2013

30

High Luminosity ILC

- TLEP can host 4 detectors → but extra 2 detectors cost ~ \$1G
 ⇔ x2 Luminosity upgrade of ILC
- Polarizations at LC ⇔ effective luminosity doubler
- Wall plug power: ILC < TLEP
- E_{cm} can be further optimized: e.g. tth

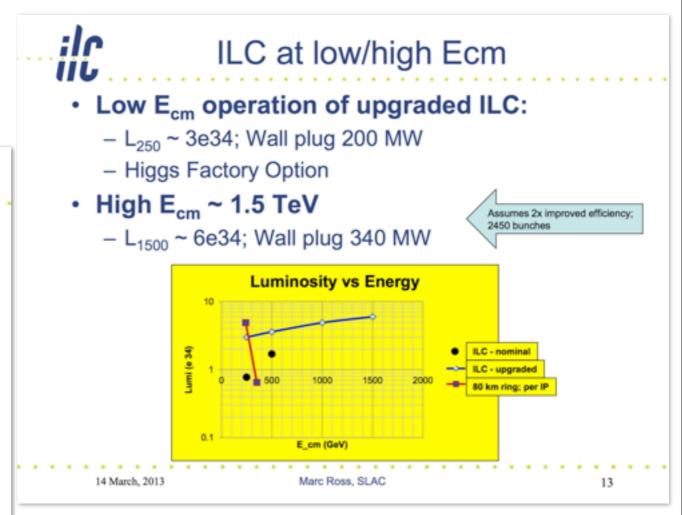
ILC Luminosity Upgrade

- Concept: increase n_b from $1312 \rightarrow 2625$
 - Reduce linac bunch spacing
 - Increase pulse current

554 ns \rightarrow 336 ns 5.8 \rightarrow 8.8 mA

~50%

- Increase number of klystrons by
- Doubles beam power → ×2 L (3.6×10³⁴cm⁻²s⁻¹)
- Damping ring:


:lr

- Electron ring doubles current (389mA → 778mA)
- Positron ring: possible 2nd (stacked) ring (e-cloud limit)
- AC power: 161 MW → 204 MW (est.)
 - AC power increased by ×1.5
 - shorter fill time and longer beam pulse results in higher RFbeam efficiency (44% → 61%)

14 March, 2013

Marc Ross, SLAC

11

Snowmass e^+e^- Collider Luminosity (fb⁻¹) based on 3×10^7 s running time for ILC & LEP3/TLEP

Ecm(GeV)	ILC	ILC Lum Upgrade	LEP3	TLEP
250	250	900	300	1500
350	300	950		200
500	500	1100		
1000	1500	1500		

Independent Higgs Measurements 900 fb-1 Hypothetical HL-ILC

250 GeV: 900 fb⁻¹ 500 GeV: 2200 fb⁻¹

1 TeV: 3000 fb⁻¹

K.Fujii

 $(M_{\rm H} = 125 \, {\rm GeV})$

	Ecm	250	250 GeV		GeV	1 TeV
	luminosity \cdot fb	25	250 (-0.8, +0.3)		500 (-0.8, +0.3)	
	polarization (e-,e+)	(-0.8,				
	process	ZH	vvH(fusion)	ZH	vvH(fusion)	vvH(fusion)
	cross section	1.4%	_		_	
		σ·Br	σ·Br	σ·Br	σ·Br	σ·Br
	H>bb	0.58%	5.5%	0.87%	0.32%	0.19%
	H>cc	3.9%		5.8%	3.0%	1.8%
	H>gg	4.8%		6.7%	2.0%	1.3%
	H>WW*	3.4%		4.4%	1.2%	0.93%
	Η>ττ	2.2%		2.6%	6.7%	2.0%
	H>ZZ*	10%		12%	3.9%	2.4%
	Η>γγ	25%		23%	16%	6.4%
ii @	ECFA LCWS 2013	250 GeV: 250 fb 500 GeV: 500 fb 1 TeV: 1000 fb		250 GeV: 90 500 GeV: 220 1 TeV: 300	0 fb ⁻¹	32

Coupling Measurements Hypothetical HL-ILC $(M_H = 125 \text{ GeV})$

250 GeV: 900 fb⁻¹ 500 GeV: 2200 fb⁻¹

1 TeV: 3000 fb⁻¹

P(e-,e+)=(-0.8,+0.3) @ 250, 500 GeV P(e-,e+)=(-0.8,+0.2) @ 1 TeV

coupling	250 GeV	250 GeV + 500 GeV	250 GeV + 500 GeV + 1 TeV
HZZ	0.70%	0.70%	0.70%
HWW	2.5%	0.75%	0.74%
Hbb	2.8%	0.93%	0.81%
Hcc	3.4%	1.4%	1.1%
Hgg	3.7%	1.3%	0.96%
Ηττ	3.0%	1.3%	1.0%
Ηγγ	13%	5.9%	2.9%
Ημμ	-	-	9.3%
Γ_0	6.1%	3.1%	3.0%
Htt	-	8.5%	2.6%

K.Fujii @ ECFA LCWS 2013

33