High Power Coupler Development for the ILC at KEK

Eiji Kako (KEK, Japan)

Eiji KAKO (KEK, Japan)

OUTLINE

- 1. Specifications for ILC input couplers
- 2. Developments of STF-couplers
- 3. Dynamic heat loads
- 4. Cu-plating
- 5. Coupler conditioning
- 6. Summary

Main Specifications of ILC Input Coupler in TDR (1)

- Frequency : 1.3 GHz
- Operation pulse width : 1.65 ms (???? 1.5 ms)
- Operation repetition rate : 5 Hz / 10 Hz
- Required RF power in operation : ~ 400 kW
- Range of external Q value : 1.~ 10. x 10⁶ (tunable)
- Number of windows : 2
- Bias voltage capability : Required

Main Specifications of ILC Input Coupler in TDR (2)

• RF processing :

in test stand (reflection mode), > 600 kW (1.6 ms)
 (transmission mode), ?? 2.4 MW ??, ave. 20 kW ??
in cryomodule, > 1200 kW (< 400 µs)</pre>

> 500 kW (> 400 μs)

• RF process time :

in warm state, < 50 hours (?? How many couplers) in cold state, < 20 hours, ????

Eiji KAKO (KEK, Japan)

PAC Summary and Recommendations (ILC Project Advisory Committee, Dec., 2012)

 The Japanese power coupler appears to be a good design, and should be pursued further to be adaptable to the TESLA-type cavity,

(having the smaller cold-end interface flange).

• My personal is

"TESLA-type cavity for ILC should have the larger

cold-end interface flange to adapt the STF input coupler."

"What is the optimum cavity structure really suitable

for ILC ?????"

Eiji KAKO (KEK, Japan)

STF-1, STF-2 Input Couplers

Eiji KAKO (KEK, Japan)

Cryomodule operation in STF

STF Phase-1 Four 9-cell cavities (2008')

4 x STF-1 input couplers

S1-Global (4+4) 9-cell cavities (2010')

4 x STF-2 input couplers

STF2 - Capture Cryomodule Two 9-cell cavities (2011')

2 x STF-2' input couplers STF2 – CM1&CM2a Cryomodule (8+4) 9-cell cavities (2014')

12 x STF-2" input couplers

Total 22 STF-2 input couplers were fabricated.

Eiji KAKO (KEK, Japan)

Comparison of coupler performance in S1-Global cryomodule

There was no severe problems in operation, but

Further studies in STF-2 couplers
Reduction of static loss
Reduction of dynamic loss
Efficient cooling by thermal anchor
RRR of Cu-plating

Dynamic loss measurements in S1-G

	TTF-III		STF-2 T		TF-III STF-2						
	C-4	C-1	A-3	A-2	A-2	4 C Cavities	4 A Cavities	4 C Cavities	4 A Cavities	7 Cavities	7 Cavities
Date	Nov. 17	Nov. 19	Nov. 23	Nov. 24	Nov. 25	Nov. 26	Nov. 30	Dec. 2	Dec. 3	Dec. 9	Dec. 10
Gradient	28 MV/m	25.2 MV/m	32.3 MV/m	38 MV/m	32 MV/m	32 MV/m Detune	32 MV/m Detune	20 .0 MV/m	26.9 MV/m	25.4 MV/m	20.4 MV/m
Dynamic Loss	0.84 W	1.44 W	2.8 W	4.8 W	2.6 W			2.7 W	6.9 W	9.6 W	4.8 W
Detuned Loss	0.09 W	0.18 W	0.7 W	1.8 W	1.2 W	0.5 W	4.6 W	0.2 W	2.5 W	2.6 W	1.6 W
Dynamic Loss at Cavity	0.75W	1.26 W	2.0 W	2.9 W	1.3 W			2.5 W	4.4 W	7.0 W	3.2 W
Q ₀	8.8E9	4.3E9	4.3E9	4.2E9	6 5E9						
Dyn Ia	amic l Irger 1	osses Than tl	of KEI hose o	< coup f TTF	lers w -III c	as 9 t coupler	imes 'S.	C1=22.2 C2=18.9 C3=14.9 C4=24.3	A1=15.8 A2=37.6 A3=32.9 A4=21.4	C1=25.2 C2=NA C3=17.6 C4=28.8 A1=15.3 A2=37.4 A3=32.4 A4=20.9	C1=20.1 C2=NA C3=14.1 C4=23.0 A1=12.3 A2=30.4 A3=26.0 A4=16.7

Temperature rises at input coupler

TTF-III input coupler

Temperature change during detuned 32MV/m

 \mathbf{x}

Temperature

Cavity-C1

STF-2 input coupler

For 30 min. operation, ΔT_{@TCC111}=0.7K (12.3K->13.0K) ΔT_{@TTC130}=5K (116K->121K)

Eiji KAKO (KEK, Japan)

Temperature sensors at STF-2 coupler in S1-G

around 5K anchor (5-cernox)

around 80K anchor (5-CC)

Eiji KAKO (KEK, Japan)

STF-2' input couplers for Capture Cryomodule

Capture Cryomodule MHI-12 cavity

Capture Cryomodule MHI-13 cavity

STF-2' (A) input coupler SUS 0.8t + Cu 5 μm Capture Cryo. - MHI-12

STF-2' (B) input coupler SUS 0.8t + Cu 10 μm Capture Cryo. - MHI-13

Eiji KAKO (KEK, Japan)

Temperature sensors at STF-2' input coupler

Al bus-bar was eliminated, (not good thermal conductivity) Cu blade-cables were used.

Eiji KAKO (KEK, Japan)

Temperature rises at input coupler (MHI-12,13)

14

Temperature rises at input coupler (MHI-12,13)

around 5K anchor

Dynamic Heat Loads at input couplers

RRR measurement of Cu-plating samples

Cu-plating Samples : SUS 1.0t Ni-strike 0.2 µm Cu 5 µm (2005')			af at in	after anneal at 800 °C in hydrogen furnace	
Sample	X1	X2	X3	X4	
RRR (Cu+SUS)	1.43	1.44	1.44	1.42	
RRR (SUS)	1.42	1.43	1.41	1.43	
RRR (Cu)	1.53	1.07	2.18	1.47	

Eiji KAKO (KEK, Japan)

RRR measurement of Cu-plating samples

18

RRR measurements of Cu-plating samples

Samples	(company)	Strike -plating	Cu -plating	Thickness of Cu	no anneal	after anneal
A	(N)	Ni	$Cu_2P_2O_7$	5 µm	A1, A2	A4, A5
В	(N)	Ni	$Cu_2P_2O_7$	20 µm	B1, B2	B4, B5
С	(N)	Au	$Cu_2P_2O_7$	5 µm	C1, C2	C4, C5
D	(N)	Au	$Cu_2P_2O_7$	20 µm	D1, D2	D4, D5
E	(T)	Ni	CuCN	5 µm	E1, E2	E4, E5
F	(T)	Ni	CuCN	20 µm	F1, F2	F4, F5
G	(F)	Ni	CuCN	10 µm	G1, G2	G4, G5
н	(F)	Ni	CuCN	35 µm	H1, H2	H4, H5

The measurements are now in progress.

8 STF-2" input couplers for STF-2/CM1 module

STF-2" input couplers for STF-2/CM1 module

STF-2"	Cold-outer strike	Cold-outer Cu-plating	Cold -inner	Warm -outer	Warm -inner
A- No. 11	Au 0.2 μm	Cu 3 µm	Cu 20 µm	Cu 10 µm	Cu 10 µm
A- No. 12	Au 0.2 μm	Cu 3 µm	Cu 20 µm	Cu 10 µm	Cu 10 µm
B- No. 13	Au 0.2 μm	Cu 3 µm	Cu 20 µm	Cu 20 µm	Cu 20 µm
B- No. 14	Au 0.2 μm	Cu 3 µm	Cu 20 µm	Cu 20 µm	Cu 20 µm
C- No. 15	Au 0.2 μm	Cu 5 µm	Cu 20 µm	Cu 10 µm	Cu 10 µm
C- No. 16	Au 0.2 μm	Cu 5 µm	Cu 20 µm	Cu 10 µm	Cu 10 µm
D- No. 17	Au 0.2 μm	Cu 5 µm	Cu 20 µm	Cu 20 µm	Cu 20 µm
D- No. 18	Au 0.2 μm	Cu 5 µm	Cu 20 µm	Cu 20 µm	Cu 20 µm

Eiji KAKO (KEK, Japan)

Conditioning of 8 \times STF-2" input couplers

Eiji KAKO (KEK, Japan)

Conditioning of 8 x STF-2" input couplers

2013' Jan. ~ May

ECFA LC13 at DESY, 2013 May 29

Eiji KAKO (KEK, Japan)

Conditioning of IHEP couplers at KEK-STF

36:00

24:00

0:00

12:00

Eiji KAKO (KEK, Japan)

1500usec,5Hz

48:00

4 STF-2" input couplers for STF-2/CM2a module

Problem of Cu-plating in STF-2" input couplers

26

- STF input couplers at KEK have been improving step by step.
- Quality control of thin Cu-plating is essentially important technology.

Thank you for your attentions.

Eiji KAKO (KEK, Japan)