Charged particle detection performances of CMOS Pixel Sensors designed in a 0.18 µm CMOS process based on a high resistivity epitaxial layer

Jérôme Baudot on behalf of the PICSEL team of IPHC-Strasbourg (iphc.cnrs.fr/PICSEL) ECFA-LC Workshop – 27-31 May 2013 – DESY, Hamburg

Contents

- ILD Vertex Detector based on CPS
- Upgrading to the 0.18 μm technology
 - × Benefits
 - *x* Test results on full pixel design
- Roadmaps
 - x Sensors
 - x System integration
- Summary & outooks

Vertex detector based on CPS

- Concept of vertex detector
 - *x* Doube-sided layer \rightarrow 2 different optimisations inner/outer side

	Radiu	s (mm)	√s = 500 GeV		√s = 1 TeV		
Side	inner	outer	Inner	Inner outer		outer	
Layer 1	16	18	3 µm / 50 µs	6 µm / 10 µs	3 µm / 50 µs	6 µm / 2µs	
Layer 2	37	39	4 μm / 100 μs		4.000	10.000 / 7.00	
Layer 3	58	60			4 µm / 100 µs	το μπ <i>7 τ</i> μs	

- State-of-the-art with process 0.35 µm
 - **x** sensitive volume :
 - \hookrightarrow ~14 µm thick
 - \hookrightarrow Resistivity > 0.4 kΩ.cm
 - x MIMOSA 26 sensor → Eu-EUDET
 - × MIMOSA 28 sensor → STAR-PXL

State-of-the-art based with process 0.35 µm

STAR – PXL detector

- x data sparsification on sensor
- x column-// rolling-shutter read-out \rightarrow t_{int} = 200 µs
- x 10 sensors / ladder of 0.37 % X_0
- *x* power dissipation ≤150 mW/cm² → air cooled
 - ➡ 3 sectors installed on 2013 May 8
 - ➡ p+p data taking from May 9

ULTIMATE sensor **MIMOSA 28** Analog read -out Outputs Pads ~ 220 µm width **Pixel Array** 928 rows x 960 columns Pitch: 20.7 µm Active area : ~ 3.8 cm² Column-level Discriminators Zero Suppression PLL VDDA REG. Bias-DAC Seq.Ctrl Mem.1 Mem.2 JTAG Pad Rine 20240 µm

3280 µm

Vertex detector based on CPS

- Concept of vertex detector
 - × Doube-sided layer → 2 different optimizations inner/outer side

	Radius	s (mm)	√s = 500 GeV		√s = 1 TeV		
Side	inner	outer	Inner	outer	inner	outer	
Layer 1	16	18	3 µm / 50 µs	6 µm / 10 µs	3 µm / 50 µs	6 µm / 2µs	
Layer 2	37	39	4		4.um / 100.up	10	
Layer 3	58	60	4 μπ /	του με	4 µm / 100 µs	το μπ <i>i i i</i> μs	

- State-of-the-art with process 0.35 µm
 - **x** sensitive volume :
 - \hookrightarrow ~14 µm thick
 - \hookrightarrow Resistivity > 0.4 kΩ.cm
 - × MIMOSA 26 sensor → Eu-EUDET
 - x MIMOSA 28 sensor → STAR-PXL

- New process 0.18 µm
 - *x* Higher μ-circuits integration & 6 metal layers
 - ➡ faster & smarter pixel
 - **x** Sensitive volume:
 - \hookrightarrow 18 to 40 µm thick
 - \hookrightarrow resistivity > 1-2 k Ω .cm
 - ➡ allow larger pixel size / aspect ratio

Benefits for accelerating the rolling-shutter read-out

- x Elongated pixels
 - \hookrightarrow less pixels/col. or in-pixel discri. \rightarrow 3 to 8x faster
- **x** Higher parallelisation
 - \hookrightarrow 2 to 4 rows read-out simultaneously
 - ↔ 4 to 8 sub-arrays read-out simultaneously
- *x* Within limits of desired spatial resolution/ power dissipation / material budget

this talk

First prototypes

- *x* Sensitive volume: ~18 µm thick, >kΩ.cm
- x Read-out time = 32 μs
- × <u>MIMOSA 32</u>
 - ← Fabricated Q1/2012
 - ↔ Charge collection properties various pixel sizes and shapes
 - Gervaria Ge

× MIMOSA 32ter

- ← Fabricated Q4/2012
- ↔ In pixel amplification & CDS
- Gervice Gervi

 "MIP" detection performance validated, reported by M.Winter at LCWS 2012

In-pixel amplification & CDS performance

Beam test conditions

- CERN-SPS: π at 80 to 120 GeV \rightarrow 1500 to 3000 tracks per condition Х
- Coolant temperatures: 15, 20, 30 °C \rightarrow sensor +5 °C Х
- Radiation loads: 0.3 MRad + $3x10^{12} n_{eq}/cm^2$ or 1 MRad + $10^{13} n_{eq}/cm^2$ Х

- Pixel pitch 20x20 µm² X
- In-pixel amplification with CDS X
- 2 options for feedback look: X
 - \hookrightarrow diode or transistor
 - ↔ yield similar results

from ILC radiation level

Radiation load	0 + 0		$3\cdot10^{12} \mathrm{~n}_{eq}/\mathrm{cm}^2$ + 300 kRad		$10^{13} \mathrm{n}_{eq}/\mathrm{cm}^2$ + 1 MRad		
Coolant temperature	15°C	30° C	20° C	30°C	20° C	30° C	
SNR	30.4 ± 0.7	28.3 ± 0.6	22.0 ± 0.3	23.0 ± 0.3	21.1 ± 0.3	19.5 ± 0.2	No impact expected from ILC radiation
Detection Efficiency	99.86 ± 0.14 %	99.59 ± 0.14 %	99.63 ± 0.13 %	99.49 ± 0.16 %	99.34 ± 0.19 %	99.35 ± 0.13 %	

Spatial resolution

- Emulation of Binary output
 - **x** Same threshold applied off-line to all pixel signals
 - → pixel outputs converted to 0 or 1
- Comparison of
 - x MIMOSA-28 (true binary output)

 $0.35~\mu m$ technology (< 1 k $\Omega.cm$) 20.7x20.7 μm^2 pixel in-pixel ampli+CDS

x MIMOSA-32

0.18 μm technology (> 1 kΩ.cm) 20x40 μm² pixel no ampli in-pixel

x MIMOSA-32ter

0.18 μm technology (> 1 kΩ.cm) 20x20 μm² pixel in-pixel ampli+CDS

Sensors in 0.18 µm techno. roadmap – 1/2

- 2012 achievements
 - x Charge collection properties validated (elongated pixel incl.)
 - x In-pixel amplification with CDS solution identified
- Intermediate prototypes
 - **x** MIMOSA-32/34
 - ↔ Optimization (noise, collect. diode, ampli.) sensors
 - x SUZE-02
 - → 2D zero-suppression logic (320 MHz / output)
 - \hookrightarrow clusters encoded on 4x5 pixel window
 - × MIMOSA-22THR
 - ↔ 136 col. X 320 pixels (22x33 µm²)
 - ↔ 128 discriminators
 - ← In-pixel ampli + CDS with column-level discri.
 - x AROM-0
 - ← In-pixel ampli + CDS + discriminator
 - x MIMADC
 - ↔ In-pixel 3-bits ADC

➡ All submitted in same engineering run in Q1-2013 -> delivery June 10

8

0-suppression stage

Beam-test foreseen for MIMOSA-34 & MIMOSA-22THR in August 2013 at DESY

General Pixel 22x33 µm² General Column-level discriminators General General

X

- ↔ Power < 350 mW/cm2
- × <u>ASTRAL</u>
 - ↔ Pixel 22x33 µm²

Sensors for ALICE-ITS

MISTRAL

- ↔ Pixel-level discriminator
- Gereic Gereich Gerei
- ↔ Power < 200 mW/cm2

Sensors in 0.18 µm techno. roadmap – 2/2

1 cm

- Intermediate prototypes continued
 - x Full Scale Basic Bloc = FSBB
 - \hookrightarrow Array of final pixel design (~1 cm²)
 - $\hookrightarrow \text{ Combined with 0-suppression}$
 - x FSBB-M (MISTRAL) Q1/2014
 - **x** FSBB-A (ASTRAL) Q2/2014
- Final prototypes
 - x MISTRAL (3 cm²) Q1/2015 (TBC)
 - x ASTRAL (3 cm²) Q4/2015 (TBC)
 - **x** MIMAIDA: 2015
 - \hookrightarrow Sensitive area = 4x6 cm²

Sensors for ALICE-ITS

× <u>MISTRAL</u>

- → Pixel 22x33 µm²
- ↔ Column-level discriminators
- General Multi-row read-out → 30 µs
- ↔ Power < 350 mW/cm2
- × <u>ASTRAL</u>
 - → Pixel 22x33 µm²
 - ↔ Pixel-level discriminator
 - Gereic Gereich Gerei
 - ↔ Power < 200 mW/cm2

System roadmap

PLUME

- x Double-sided ladders with ILD geometry and material budget 0.6 % X_0
 - ← produced, tested in beam, power-pulsing in progress
- New double-sided ladders with material budget 0.35 % X_0
 - → Production in progress (aluminum cable fab. slow)
- Alignment Investigation Device
 - x 3 stations with 2 ladders each in sector-like geometry
 - \hookrightarrow delayed due to collaboration recomposition

Integration studies performed by ALICE collaboration

- × Internal Tracker System upgrade → 9 m² equipped with CPS
 - \hookrightarrow 7 single-sided layers from r = 2.2 cm to r = 43 cm
 - \hookrightarrow material budget goal = 0.3 to 0.5 % X₀ (depends on radius)
- Mechanical support
 - \hookrightarrow light carbon-fiber trussed structures
- x Cooling
 - ← micro-channel manufactured in polyimide cable
- x Bonding
 - ← "cold" ball-grid array type interconnection

Summary and Outlooks

- Technology unveiling real CPS potential identified
 - **x** TowerJazz 0.18 μm process
 - **x** First prototypes (2011-12) validated detection features of the technology
 - **x** Prospect to reach CPS matching 1 TeV running conditions
- Roadmap
 - x Intermediate prototypes: fabrication 2013-14, tests 2013-14
 - **x** Final sensors for ALICE-ITS: 2015
 - **x** Adaptation to ILC-VTX: 2017-19
- Progress on systems exploiting CPS
 - **x** First CPS-based vertex detector operating in STAR since this month
 - **x** Integrations studies ongoing in ALICE for a 9 m² CPS-system (inner and outer layers)
 - General Ge

ADDITIONAL SLIDES