

DEPFET detectors for future e⁺e⁻ colliders

Carlos Marinas University of Bonn

On behalf of the DEPFET Collaboration

cmarinas@uni-bonn.de

Outline

SuperKEKB and ILC

- Common requirements
- DEPFET system
 - Sensor development
 - ASICs
- Latest results
 - Lab and beam tests

The ILD vertex detector

The Belle II Collaboration decided on DEPFET as baseline for the pixel detector

1			
	L	P	

	ILD LOI 5-layer layout	Belle II	
Radii	15, 26, 38, 49, 60	14, 22	mm
Ladder length	123 (L1), 250 (L2-L5)	90 (L1), 122 (L2)	mm
Sensitive width	13 (L1), 22 (L2-L5)	12.5 (L1-L2)	mm
Number of ladders	8, 8, 12, 16, 20	8, 12	
Pixel size	25x25 (L1-L5)	50x50 (L1), 50x75 (L2)	μm²
Frame rate	20 (L1), 4 (L2-L5)	50	kHz

The Belle II PXD DEPFET ladders: *almost* prototypes for L1 and L2 of ILD

• Both detectors have very similar (challenging!) requirements:

	ILC	Belle II
Single point resolution	<5 µm	<10 µm
Radiation	~1 Mrad (10 years)	~20 Mrad (10 years)
Material budget	0.1 % X ₀ /layer	0.2 % X ₀ /layer
Frame time	25-100 µs	20 µs

- High granularity for excellent spatial resolution
- Radiation tolerant to e⁻ (X rays) in the MeV (tens keV) range
- Low material budget:
 - Ultra transparent sensors with large SNR.
 - Low power dissipation
 - Minimal support, reduced services, and cooling material
- Fast readout

The DEPFET ladder

DHP (Data Handling Processor) First data compression

IBM CMOS 90 nm (TSMC 65 nm) Size $4.0 \times 3.2 \text{ mm}^2$ Stores raw data and pedestals Common mode and pedestal correction Data reduction (zero suppression) Timing signal generation Rad. Hard proved (100 Mrad) ⁵

The DEPFET ladder

Off-module signal flow

Use anisotropic etching on bonded wafers to create a thin, self-supporting sensor \rightarrow One material: uniform and small thermal expansion

PXD6 DEPFET latest prototype production

8 SOI wafers with 50 μ m thin sensors (400 μ m handle)

- \bullet Small test matrices to test different pixel sizes (50-200 $\mu m)$
- Design variations: short gate lengths, clear structures, drift
- Full size sensors –half ladders for prototyping
- Technology variations on the wafer level

90 steps fabrication process:

- 450 μm 50 μm
- 9 Implantations
 19 Lithographies
 2 Poly-layers
 2 Alu-layers
 1 Copper layer
 Back side processing

First 50 µm thin DEPFET sensors produced!

cmarinas@uni-bonn.de

Hybrid 5.0 – Concept demonstrator

universität**bonn**

- Zero suppressed readout with the minimum necessary amount of components:
 - One Switcher-B
 - One DCDBv2
 - One DHP 0.2
 - Small thin matrix: Belle II SD PXD6 type, 16x128 pixels, 50x75 μm² pitch
- Frame rate: 300 kHz (small matrix)

- Data processing
- SWITCHER sequencing
- Inter-chip communication
- Serial link

Photo of the hybrid 5 (without DEPFET matrix)

Un-triggered acquisition, DHP0.2 data loss characteristic as a function of the input data occupancy (C++ and real chip)

No data loss for the expected occupancy

Laboratory tests: DHP

- Data processing
- SWITCHER sequencing
- Inter-chip communication
- Serial link

Photo of the hybrid 5 (without DEPFET matrix)

DHP can control the SwitcherB sequence

Laboratory tests: DHP

- Data processing
- SWITCHER sequencing

Photo of the hybrid 5 (without DEPFET matrix)

- Inter-chip communication
- Serial link

150 -

DCDB and DHP can communicate at full speed

Laboratory tests: DHP

- Data processing
- SWITCHER sequencing
- Inter-chip communication
- Serial link

Irradiated (100 Mrad) DHPT 0.1, can drive 15 m of Infiniband cable

Laboratory tests: DCD

V_{gate, off} V DCD dynamic measurements • gate, on Readout speed with single sampling $\mathsf{V}_{\mathsf{dear},\mathsf{high}}$ $\mathsf{V}_{\mathsf{clear},\mathsf{lov}}$ Belle II PXD frame readout: 20 µs ٠ (50 KHz frame rate) drain integration / Read-clear cycle: 100 ns ۲ readout clear next cycle charge collection (768 rows, 4 fold readout) 15 Enough headroom for safe fast speed operation during clear gate off / clear off 1st sample gate on clear on -15 time / ns 90 ns Long drain lines $\sim 60 \, \text{pF}$ parasitic -20 -10 10 20 30 40 50 60 70 80 90 0 capacitance

Laboratory tests: DEPFET sensor

- Biasing optimization (HV, ClearGate, Drift)
- Laser scan ٠ Charge collection homogeneity In pixel studies
- Radioactive source • System calibration

Homogeneous charge collection 16

Beam tests

DEPFET PXD6 extensively tested over the last campaigns 120 GeV pions at CERN-SPS 1-5 GeV electrons at DESY

Sensor properties

Charge collection homogeneity, operating points, efficiency, angular scans Various pixel sizes, gate lengths, clear structures, drift regions and pixel designs

System related aspects

Power supply prototypes DHH and ONSEN readout

Here, just an appetizer

cmarinas@uni-bonn.de

Beam tests

universität**bonn**

Beam tests

Data analysis is ongoing

TB 2008 and 2009: PXD5 ILC sensors

Expected resolution at ILC

Electric MultiChip Module (E-MCM)

4 layer kapton cable attached and wire bonded to Si-Module for I/O and power

Electric MultiChip Module (E-MCM)

Metal system as close as possible to final \rightarrow Electrical information

E-MCM in reality

→ Modules produced, tested and ready for flip chip

- ↘ 4-fold readout possible
 - → Two times faster frame readout keeping the row rate

cmarinas@uni-bonn.de

Detail of the Switcher landing area

- The DEPFET Collaboration is developing utra-transparent pixel sensors with integrated amplification
- The good performance of the DEPFET detector system in terms of SNR, spatial resolution, readout speed is demonstrated
- The Belle II PXD boosted the development of DEPFET detectors
 → Direct benefit towards the ILC-VXD project (ILD-VXD layer concept 'engineered')
- Building a real system: Every detail (although not covered here) is being considered

→ Interconnection technologies, rad. Hardness, cooling, mechanics, ... (see backup)

 \rightarrow For more detailed information: "DEPFET active pixel detectors for a future linear e+e- collider". M. Vos *et al.* arXiv:1212.2160

Thank you

cmarinas@uni-bonn.de

Radiation hardness

Oxide damage at Gates Bulk damage 1.5x10⁻⁴ $\alpha = 4.08 \times 10^{-19}$ A/cm 4 μm, x-ray 5 μm, x-ray 1.3x10⁻⁴ 6 μm, x-ray Negligible contribution (<400 e-) at Troom - 6 μm DEPFET, e after 10 Mrad (Internal Gate: 40 ke-) 4 1.0x10⁻⁴ AI / V (A/cm³) V_{th} shift (V) 7.5x10⁻⁵ 10 MeV e 5.0x10⁻⁵ $y = a + b^*x$ Equation No Weighting Weight 2.18605E-10 Residual Sum of Squares 2.5x10⁻⁵ 5 V at 10 Mrad 0.98955 0 Adj. R-Square Value Standard Error Intercept Deltal/V 2.09495E-20 Slope 4.08259E-19 0.0 0 2000 4000 6000 8000 10000 0.00E+000 1.00E+014 2.00E+014 3.00E+014 Dose (krad) Electron fluence (cm⁻²)

Threshold voltage
 shift can be handled
 by the system

DE+000 1.00E+014 2.00E+014 3.00E+014 4.00E+014 Electron fluence (cm⁻²) Damage constant: α_{el} =4.2·10⁻¹⁹ A/cm Damage constant: α_n =4.0·10⁻¹⁷ A/cm → Hardness factor is lower than expected $\kappa_{meas} = \frac{\alpha(10MeVe^{-})}{\alpha(1MeVn)} = 0.014$ $\kappa_{theo} = \frac{NIEL(10MeVe^{-})}{NIEL(1MeVn)} = 0.06$ ✓ Relaxed bulk damage 27

DCDB

28

Drain Current Digitizer for Belle II

- 512 ADCs
- Cyclic conversion
- 320 MHz clocked
- 100 ns conversion time
- Mean INL < 1.5LSB (Max < 2.2 LSB)
- Gain variation < 5% (peak to peak)

cmarinas@uni-bonn.de

DCD Channel Layout

- ADC Operation
 - 1. Sample input current with two Current Memory Cells (CMC1 and CMC2)
 - 2. Compare Current from one CMC to low/high threshold
 - 3. If above/below low/high threshold, activate add/subtract current sources
 - 4. Copy current from CMC1, CMC2 and extra current sources to CMC3 and CMC4.
 - 5. Repeat from Step 2 (with CMC3 and CMC 4)

DHP 0.2

Data Handling Processor

- Digital common mode subtraction
- Digital pedestal compensation
- Zero suppression
- First full size chip
- Switcher control
- 1.6 Gb serial link
- 3 % occupancy with <1% data loss

 \rightarrow The efficiency is higher, both column and row wise, than 99.5%

Building the Belle II PXD

Inner layer close to the IP (14mm)

Additional carbon fibers capillaries to cool the Switchers, if needed (not tested yet)

Measurements with mockup

Thermo-mechanical measurements

cmarinas@uni-bonn.de

Temperatur [°C]

ILC scenario: Power cycle and air only

↘ Naïve approach using the XFEL hands-on:

 The power consumptions are weighted accordingly to the estimated duty cycle.
 → Completely shutting down the DEPFET and the analogue part of the electronics between trains → 1/25 power reduction if 1/100 duty cycle

The air speed and temperature are not optimized to minimize the temperature distribution

 P_{FE} =(0.5/25.) W / per chip P_{Sw} =(0.1/25.) W / per chip P_{Sensor} =(1./25.) W in total

↘ Although <u>very</u> preliminary, the cooling seems feasible so far

Material budget

universität**bonn**

	Belle II	ILC
Frame thickness	525 µm	450µm
Sensitive layer	75 μm	50µm
Switcher thickness	500µm	100µm
Cu layer	only on periphery	50% cover over all
Total	0.21 %X0	0.15 %X0

cmarinas@uni-bonn.de

ILD 3 double layer VXD option

- Complementary etch grooves in support frames
- Same process step as thinning and micro-joint (Belle II)
- Adhesive joint between layers

- DEPFET technology is NOT linked only to the 5 layer VXD option
- Single ladder engineered to a large extent
- Double layer still needs R&D