Light Higgsino Precision Measurements at the ILC

Carl Mikael Berggren, Felix Brümmer, Jenny List, Gudrid-Moortgat-Pick, Tania Robens, Krzysztof Rolbiecki, <u>Hale Sert</u>

DESY-Hamburg University

29 May 2013

Outline						
Outline						

Introduction

- Light Higgsino Scenario
- Related Processes and Decay Modes
- Higgsino Signatures and Challenges
- Anaysis Overview

Measurement Strategy

Event Selection

- Pre-Selection
- Selection
- Results
 - $\tilde{\chi}_1^{\pm}$ & $\tilde{\chi}_2^0$ Mass Measurement
 - Mass Difference Measurement
 - Polarized Cross Section Measurement

Conclusion

Motivated by naturalness which requires μ at the electroweak scale

Scenario contains

- \succ 3 light Gauginos, Higgsinos like: $\tilde{\chi}_1^\pm$ & $\tilde{\chi}_1^0$ & $\tilde{\chi}_2^0$
- > Almost mass degenerate: $\Delta M(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0)$ & $\Delta M(\tilde{\chi}_2^0, \tilde{\chi}_1^0) \sim$ a few GeV
- All other supersymmetric particles are heavy up to a few TeV

Motivated by naturalness which requires μ at the electroweak scale

Scenario contains

- \succ 3 light Gauginos, Higgsinos like: $ilde{\chi}_1^\pm$ & $ilde{\chi}_1^0$ & $ilde{\chi}_2^0$
- > Almost mass degenerate: $\Delta M(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) \& \Delta M(\tilde{\chi}_2^0, \tilde{\chi}_1^0) \sim a$ few GeV
- > All other supersymmetric particles are heavy up to a few TeV

Mass Spectrum			
Particle	Mass (GeV)		
h	124		
$\tilde{\chi}_1^0$	164.17		
$\tilde{\chi}_1^{\pm}$	165.77		
$\tilde{\chi}_2^0$	166.87		
H's	$\sim 10^3$		
$ ilde{\chi}$'s	$\sim 2-3 imes 10^3$		

 $\Delta M(ilde{\chi}_1^\pm, ilde{\chi}_1^0) = 1.59 \; ext{GeV}$

Mas	Mass Spectrum				
Particle	Mass (GeV)				
h	127				
$\tilde{\chi}_1^0$	166.59				
$\tilde{\chi}_1^{\pm}$	167.36				
$\tilde{\chi}_2^0$	167.63				
H's	$\sim 10^3$				
$ ilde{\chi}$'s	$\sim 2-3 imes 10^3$				

 $\Delta M(ilde{\chi}_1^{\pm}, ilde{\chi}_1^0) = 0.77$ GeV

But also high scale models, for instance: "Hybrid Gauge-Gravity Mediated Supersymmetry Breaking Models" Ref: F. Brummer et al. hep-ph:1201.4338

Hale Sert | Light Higgsino Scenario | ECFA-LC 2013 | 29 May 2013 | 2/19

 Other combinations are kinematically allowed, but have negligible cross sections.

Decay Modes:

 Other combinations are kinematically allowed, but have negligible cross sections.

Decay Modes:

Introduction

Measurement Strategy

Event Selection

Neutralino Process

Results

Conclusion

Separation of the Processes

Chargino Process

Introduction

Measurement Strategy

Event Selection

Neutralino Process

Results

Conclusion

Separation of the Processes

Chargino Process

Introduction

Measurement Strategy

Event Selection

Neutralino Process

Results

Conclusion

Separation of the Processes

Chargino Process

Ref: C.-H. Chen et al. hep-ph:9512230

Introduction

Measurement Strategy

Event Selection

Results

Conclusion

Separation of the Processes

Chargino Process

$m_h = 124 GeV$	$m_h = 127 GeV$
$\Delta M=1.59$ GeV	$\Delta M=0.77 \text{ GeV}$
$e/\mu + \pi^{\pm}(\pi^0)$	$e/\mu+\pi^{\pm}$
BR = 30.5%	BR = 35%

Neutralino Process

In the Final State

- > A few soft visible particles
- > A lot of missing energy (2 $\tilde{\chi}_1^0$)

It is extremely challenging for LHC to observe or resolve such a low energetic and degenerate particles

It is extremely challenging for LHC to observe or resolve such a low energetic and degenerate particles

It is also non-trivial for ILC

It is extremely challenging for LHC to observe or resolve such a low energetic and degenerate particles

It is also non-trivial for ILC

- ► It is very similar to some SM background final states, especially $\gamma\gamma \rightarrow f\bar{f}$.
- We have required hard ISR photon, to avoid this similarity.

 $\mathbf{e}^+ \mathbf{e}^-
ightarrow \widetilde{\chi}_1^+ \widetilde{\chi}_1^- \gamma$ $\mathbf{e}^+ \mathbf{e}^-
ightarrow \widetilde{\chi}_2^0 \widetilde{\chi}_1^0 \gamma$

	Introduction				
	000000				
Analysis Overview					

Software:

- Generate events with Whizard (ILC-Whizard by generator group) Ref: Wolfgang Kilian et al., hep-ph: 0708.4233v2
 - Branching ratios are calculated by Herwig++ Ref: M. Bahr et.al., Eur.Phys.J., C58:639–707, 2008
- DBD generated samples for SM backgrounds
- Apply fast detector simulation SGV (ILD DBD version of SGV)

Ref: M. Berggren, physics.ins-det: 1203.0217

- Track efficiency, which is obtained from full simulation including pair backgrounds, is applied for low P_t
 - Signals
 - Dominating SM background

Introduction						
Analysis Overview						

Data Set:

 $\blacktriangleright \sqrt{s} = 500 \text{ GeV}$

>
$$\int \mathcal{L} dt = 500 \text{ fb}^{-1}$$
 for each polarization

Polarization:

$$\blacktriangleright$$
 $P_{e^+}=+30\%$, $P_{e^-}=-80\%$

$$\blacktriangleright~P_{e^+}=-30\%$$
 , $P_{e^-}=+80\%$

Cross Sections are calculated by whizard

	$m_h = 124 GeV$		$m_h = 127 GeV$	
Processes	$ ilde{\chi}_1^+ ilde{\chi}_1^- \gamma$	$ ilde{\chi}_2^{0} ilde{\chi}_1^{0}\gamma$	$ ilde{\chi}_1^+ ilde{\chi}_1^- \gamma$	$ ilde{\chi}_2^{m 0} ilde{\chi}_1^{m 0}\gamma$
$\sigma(e_L^+e_R^- \to \tilde{\chi}\tilde{\chi}\gamma)$	26.83 ± 0.05	61.66 ± 0.10	26.28 ± 0.05	60.92 ± 0.10
$\sigma(e_R^+e_L^- \rightarrow \tilde{\chi}\tilde{\chi}\gamma)$	132.99 ± 0.23	80.12 ± 0.13	130.05 ± 0.22	79.16 ± 0.13

Aim of the Study: To measure

- > mass of the $\tilde{\chi}_1^+$ & $\tilde{\chi}_2^0$.
- > mass difference between $\tilde{\chi}_1^+$ & $\tilde{\chi}_1^0$.
- precision on the polarized cross section

$\tilde{\chi}_1^+$ & $\tilde{\chi}_2^0$ Mass Measurement ($M_{\tilde{\chi}_1^{\pm}}$ & $M_{\tilde{\chi}_2^0}$):

Recoil mass of hard ISR photon is used to measure mass of $\tilde{\chi}_1^+$ & $\tilde{\chi}_2^0$ Recoil Mass:

$$M_{recoil}^2 = s - 2\sqrt{s}E^{\gamma}$$

> $M_{recoil} = 2 \times M_{\tilde{\chi}}$ at the rest frame of $\tilde{\chi} = \tilde{\chi}_1^{\pm}$ or $\tilde{\chi}_2^0$.

> Fitting gives $M_{\tilde{\chi}}$.

$\tilde{\chi}_1^+$ & $\tilde{\chi}_2^0$ Mass Measurement ($M_{\tilde{\chi}_1^{\pm}}$ & $M_{\tilde{\chi}_2^0}$):

Recoil mass of hard ISR photon is used to measure mass of $\tilde{\chi}_1^+$ & $\tilde{\chi}_2^0$ Recoil Mass:

$$M_{recoil}^2 = s - 2\sqrt{s}E^{\gamma}$$

>
$$M_{recoil} = 2 \times M_{\tilde{\chi}}$$
 at the rest frame of $\tilde{\chi} = \tilde{\chi}_1^{\pm}$ or $\tilde{\chi}_2^0$.

> Fitting gives $M_{\tilde{\chi}}$.

However; this method is an approximation, since

formula is obtained only after some assumptions

> \sqrt{s} is assumed 500 GeV

Hence,

> calibration is applied to the masses.

 $\tilde{\chi}_1^+$ & $\tilde{\chi}_2^0$ Mass Measurement ($M_{\tilde{\chi}_1^{\pm}}$ & $M_{\tilde{\chi}_2^0}$):

Recoil mass of hard ISR photon is used to measure mass of $ilde{\chi}_1^+$ & $ilde{\chi}_2^0$

Recoil Mass: $M_{recoil}^2 = s - 2\sqrt{s}E^{\gamma}$

Mass Difference Measurement ($\Delta M(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0)$):

> Boost decay products to the rest frame of $\tilde{\chi}_1^{\pm}$

Boosted Energy:

$$E^*_{\pi} = rac{(\sqrt{s}-E^{\gamma})E^{\pi}+{f P}^{\pi}\cdot{f P}^{\gamma}}{2M_{ ilde{\chi}^\pm_1}}$$

At the rest frame of $\tilde{\chi}_1^{\pm}$;

>
$$\tilde{\chi}_1^0$$
 is produced at rest,

 $\succ E^*_{decays} = \Delta M(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0)$

$\tilde{\chi}_1^+$ & $\tilde{\chi}_2^0$ Mass Measurement ($M_{\tilde{\chi}_1^{\pm}}$ & $M_{\tilde{\chi}_2^0}$):

Recoil mass of hard ISR photon is used to measure mass of $\tilde{\chi}_1^+ \& \tilde{\chi}_2^0$ Recoil Mass: $M_{recoil}^2 = s - 2\sqrt{s}E^{\gamma}$

Mass Difference Measurement ($\Delta M(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0)$):

Boost decay products to the rest frame of $\tilde{\chi}_{1}^{\pm}$ ($E_{decays}^{*} = \Delta M(\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{0})$) Boosted Energy: $E_{\pi}^{*} = \frac{(\sqrt{s} - E^{\gamma})E^{\pi} + \mathbf{P}^{\pi} \cdot \mathbf{P}^{\gamma}}{\frac{2M_{\tilde{\chi}_{1}^{\pm}}}{\chi_{1}^{\pm}}}$

Polarized Cross Section Measurement ($\delta \sigma_{polarized} / \sigma_{polarized}$)

Statistical precision on polarized cross section

$$\begin{split} & \frac{<\delta\sigma_{meas}>}{<\sigma_{meas}>} = \frac{1}{\sqrt{\epsilon \cdot \pi \cdot \int \mathcal{L} dt \cdot \sigma_{signal}}} \\ & \sigma_{meas} = \sigma_{polarized} \times BR(\tilde{\chi}_1^+ \tilde{\chi}_1^- \to 2\tilde{\chi}_1^0, \pi, \mathbf{e}(\mu)) \end{split}$$

Estimated Precison is based on efficiency and purity

		Event Selection				
Event Selection						

Before Any Selection

			Event Selection		
		Event	Selection		
Preselect E_bea Nrec Req Esof Esof Emis cos	tion: $a_{mcal} < 40 \text{ GeV}$ $a_{sonstructed particles} < 15$ $a_{sonstructed particles} < 15$ a_{son	5	$m_{h} = 127 \text{ GeV}$ 10^{4} 10^{3} 10^{2} $0 \qquad 1 \qquad 2$	$\vec{x}_{1}^{\dagger} \vec{x}_{1}^{\dagger} \vec{\gamma}$ $\vec{x}_{1}^{\dagger} \vec{x}_{2}^{0} \vec{\gamma}$ $\vec{x}_{1}^{0} \vec{x}_{2}^{0} \vec{\gamma}$	1ta
				PT	/GeV

After PreSelection

			Event Selection		
		Event	Selection		
Selection E_{bec} N_{rec} Rec E_{sof} E_{sof} E_{sof} E_{sof} E_{sof} E_{sof} E_{sof} E_{sof} E_{sof}	n: amcal < 40 GeV constructed particles $<$ juire 1 photon with $E_{\gamma}^{max} > 10 \text{ GeV}$ $ \cos \theta_{\gamma}^{ISR} < 0.992$ is $\theta_{soft} < 0.9397$ t < 5 GeV as > 300 GeV is $\theta_{miss} < 0.992$ ext semi-leptonic 1π and (1 e or 1	15 th 3 decay modes μ)	$\begin{array}{c} \text{Steps} \\ \text{Homoson} \\ 10^3 \\ 10^2 \\ 10 \\ 10 \\ 0 \\ 1 \\ 2 \\ 1 \\ 0 \\ 1 \\ 2 \\ 1 \\ 1$	$\begin{array}{c c} \mathbf{x} & \mathbf{x}_{1}^{T} \mathbf{x}_{1}^{T} \mathbf{x}_{1}^{T} \mathbf{x}_{2}^{T} \mathbf{x}_{1}^{T} \mathbf{x}_{2}^{T} \mathbf{x}_{2}^{T} \mathbf{x}_{3}^{T} \mathbf{x}_{2}^{T} \mathbf{x}_{3}^{T} \mathbf{x}_{2}^{T} \mathbf{x}_{3}^{T} $	lata
	((**)			

 $\succ E_{\pi}^* < 3 \text{ GeV}$

After Chargino Selection

			Event Selection ○●		
		Event Se	election		
Selection F_{bec} N_{rei} Rec F_{sout}	$\begin{array}{l} \sum_{amcal} < 40 \ {\rm GeV} \\ \sum_{constructed particles} < \\ {\rm quire 1 photon with the second se$	15 th st 3	10^{3} m _h = 127 Ge	$\begin{array}{c} \mathbf{v} \\ $	ata
> Sel	ect semi-leptonic	decay modes	0 1 2	P ₁	₋/GeV

- > Select semi-leptonic decay modes
 - 1 π and (1 e or 1 μ)
- $E_{\pi}^{*} < 3 \text{ GeV}$
- Select photon decay mode
 - $\blacktriangleright 1 \gamma$

After Neutralino Selection

Event Selection

Results

Conclusion

Mass Measurement Procedure

Fitting Procedure

- Fitting is done in the following order:
 - SM background is fitted with a convenient function assuming that we can precisely predict SM background.
 - SM background is fixed.
 - SM background + Signal are fitted using linear function for signal.

Event Selection

Results

Conclusion

Mass Measurement Procedure

Calibration Procedure

- Choose different true masses (X-axis)
- Apply measurement and get fitted masses (Y-axis)
- > Obtain calibration curve

Event Selection

Results

Conclusion

Mass Measurement Procedure

Calibration Procedure

- Choose different true masses (X-axis)
- Apply measurement and get fitted masses (Y-axis)
- > Obtain calibration curve

Event Selection

Results

Conclusion

Mass Measurement Procedure

Calibration Procedure

- Choose different true masses (X-axis)
- Apply measurement and get fitted masses (Y-axis)
- > Obtain calibration curve

Introduction

Measurement Strategy

Event Selection

Results

Conclusion

$\tilde{\chi}_1^+$ Mass Measurement & Calibration

Event Selection

Results ○○●○○○ Conclusion

$\tilde{\chi}_1^+$ Mass Measurement & Calibration

Conclusion

Event Selection

Results

Conclusion

$\tilde{\chi}_2^0$ Mass Measurement & Calibration

Event Selection

Results

Conclusion

$\tilde{\chi}_2^0$ Mass Measurement & Calibration

				Results
	${ ilde \chi}^{f 0}_{f 2}$ N	lass Measurer	nent & Calibra	ation
>			> <u>Europionio</u>	*****

Introduction

Measurement Strategy

Event Selection

Results

Conclusion

Mass Difference Measurement

Event Selection

Results

Conclusion

Mass Difference Measurement

Event Selection

Results

Conclusion

Mass Difference Measurement

Polarized Cross Section Measurement

Efficiency, Purity and Precison on Polarized Cross Sections:

Polarizations	$P(e^+, e^-) = (+30\%, -80\%)$		${\sf P}({\sf e}^+,{\sf e}^-)=(-30\%,+80\%)$		
Processes	$\tilde{\chi}_1^+ \tilde{\chi}_1^- \gamma$	$ ilde{\chi}_2^{f 0} ilde{\chi}_1^{f 0} \gamma$	$ ilde{\chi}_1^+ ilde{\chi}_1^- \gamma$	$ ilde{\chi}_2^{0} ilde{\chi}_1^{0}\gamma$	
m _h =124 GeV					
Efficiency($\epsilon \times BR$)	24.1 %	28.8 %	24.1 %	28.8 %	
$Purity(\pi)$	62.8 %	50.9 %	32.4 %	49.6 %	
$\frac{\langle \delta \sigma_{meas} \rangle}{\langle \sigma_{meas} \rangle}$	2.3 %	3.4 %	6.5 %	3.8 %	
m _h =127 GeV					
Efficiency($\epsilon \times BR$)	41.4 %	29.7 %	41.4 %	29.7 %	
$Purity(\pi)$	90.7 %	74.7 %	67.9 %	73.9 %	
$\frac{\langle \delta \sigma_{meas} \rangle}{\langle \sigma_{meas} \rangle}$	1.4 %	1.6 %	3.2 %	1.8 %	

Polarized Cross Sections:

			Conclusion •
	Conclu	ision	

- Light Higgsinos are well motivated by naturalness
- It is a challenging scenario for LHC
- > Separation of Higgsinos at the reconstructed level is possible at the ILC
- Assumed
 - ▶ $\sqrt{s} = 500 \text{ GeV}$
 - ▶ $\int \mathcal{L}dt = 500 \ fb^{-1}$ with $P(e^+, e^-) = (+30\%, -80\%)$ and $P(e^+, e^-) = (-30\%, +80\%)$ each

> Statistical uncertainities for $P(e^+, e^-) = (+30\%, -80\%)$

 $m_h = 124 \text{ GeV}$

► $\delta(\sigma \times BR) \approx 3 \% \quad \delta M_{\tilde{\chi}_1^{\pm}}(M_{\tilde{\chi}_2^0}) \approx 2.1(3.7) \text{ GeV} \quad \delta \Delta M(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) = 70 \text{ MeV}$ m_b=127 GeV

• $\delta(\sigma \times BR) \approx 1.5 \,\% \, \delta M_{\tilde{\chi}_1^{\pm}}(M_{\tilde{\chi}_2^0}) \approx 1.5(1.6) \,\text{GeV} \, \delta \Delta M(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) = 20 \,\,\text{MeV}$

			Conclusion •
	Conclu	ision	

- Light Higgsinos are well motivated by naturalness
- It is a challenging scenario for LHC
- > Separation of Higgsinos at the reconstructed level is possible at the ILC
- Assumed
 - ▶ $\sqrt{s} = 500 \text{ GeV}$
 - ▶ $\int \mathcal{L}dt = 500 \ fb^{-1}$ with $P(e^+, e^-) = (+30\%, -80\%)$ and $P(e^+, e^-) = (-30\%, +80\%)$ each

> Statistical uncertainities for $P(e^+, e^-) = (+30\%, -80\%)$

 $m_h = 124 \text{ GeV}$

► $\delta(\sigma \times BR) \approx 3 \% \quad \delta M_{\tilde{\chi}_1^{\pm}}(M_{\tilde{\chi}_2^0}) \approx 2.1(3.7) \text{ GeV} \quad \delta \Delta M(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) = 70 \text{ MeV}$

 $m_h=127 \text{ GeV}$

 $\blacktriangleright \ \delta(\sigma \times BR) \approx 1.5 \ \% \ \ \delta M_{\tilde{\chi}_1^\pm}(M_{\tilde{\chi}_2^0}) \approx 1.5(1.6) \ \text{GeV} \quad \delta \Delta M(\tilde{\chi}_1^\pm, \tilde{\chi}_1^0) = 20 \ \text{MeV}$

Can this scenario be used to calculate μ parameter and predict $M_1 \& M_2$? Krzysztof's talk

Backup

Hale Sert | Light Higgsino Scenario | ECFA-LC 2013 | 29 May 2013 | 21/19

$\gamma\gamma \rightarrow f\bar{f} SM background$

 $\gamma\gamma
ightarrow far{f}$ SM background

 Outgoing particles go in the direction of the beampipe. So,

In the final state:

2 fermions with low energy, which is very similar to the signal > We have required hard ISR photon,

$$e^+e^-
ightarrow ilde{\chi}_1^+ ilde{\chi}_1^- \gamma \ e^+e^-
ightarrow ilde{\chi}_2^0 ilde{\chi}_1^0 \gamma$$

to avoid this similarity of the final states.

> For $\gamma \gamma \rightarrow f \bar{f}$ SM background

additional γ makes the beam electron visible in the detector.

realiser of events for two signals and an own background.	Number	of	events	for	two	signals	and	all	SM	background:
---	--------	----	--------	-----	-----	---------	-----	-----	----	-------------

Polarizations	$P(e^+, e^-) = (+30\%, -80\%)$			$P(e^+, e^-) = (-30\%, +80\%)$		
Processes	$\tilde{\chi}_1^+ \tilde{\chi}_1^- \gamma$	$\tilde{\chi}_2^0 \tilde{\chi}_1^0 \gamma$	All SM Bkg	$\tilde{\chi}_1^+ \tilde{\chi}_1^- \gamma$	$\tilde{\chi}_2^0 \tilde{\chi}_1^0 \gamma$	All SM Bkg
m _h =124 GeV						
nocut	38672	24250	1.37×10^{8}	9817	19071	$1.05 imes 10^8$
semi-lep sel	2872	82	906	712	62	893
photon sel	53	1733	1616	11	1414	1423
m _h =127 GeV						
nocut	38130	23940	1.37×10^{8}	9792	18773	1.05×10^{8}
semi-lep sel	5489	38	525	1408	32	634
photon sel	155	5224	1616	44	4128	1423

Measurement Results for Efficiency, Purity and Polarized Cross Sections:

Polarizations	$P_{e^+} = +30$	$0\%, P_{e^-} = -80\%$	$P_{e^+} = -30\%, P_{e^-} = +80\%$		
Processes	$ ilde{\chi}_1^+ ilde{\chi}_1^- \gamma$	$ ilde{\chi}_2^{0} ilde{\chi}_1^{0} \gamma$	$ ilde{\chi}_1^+ ilde{\chi}_1^- \gamma$	$ ilde{\chi}_2^{0} ilde{\chi}_1^{0}\gamma$	
$m_h = 124 \text{ GeV}$					
Efficiency($\epsilon \times BR$)	24.1 %	28.8 %	24.1 %	28.8 %	
Purity(π)	62.8 %	50.9 %	32.4 %	49.6 %	
$\frac{\langle \delta \sigma_{meas} \rangle}{\langle \sigma_{meas} \rangle}$	2.3 %	3.4 %	6.5 %	3.8 %	
$m_h = 127 {\rm GeV}$					
Efficiency($\epsilon \times BR$)	41.4 %	29.7 %	41.4 %	29.7 %	
Purity(π)	90.7 %	74.7 %	67.9 %	73.9 %	
$\frac{\langle \delta \sigma_{meas} \rangle}{\langle \sigma_{meas} \rangle}$	1.4 %	1.6 %	3.2 %	1.8 %	

