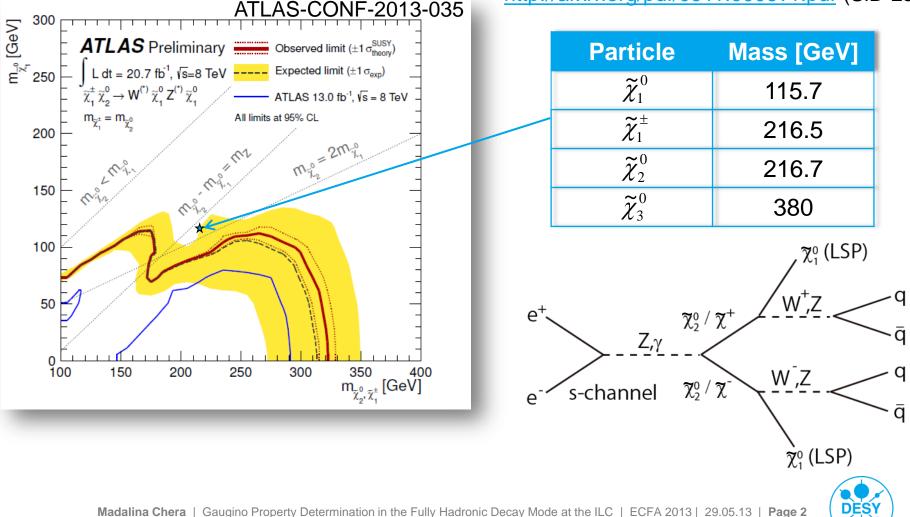
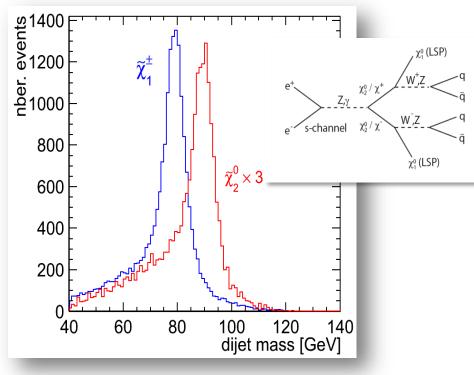
Gaugino Property Determination in the Fully Hadronic Decay Mode at the ILC

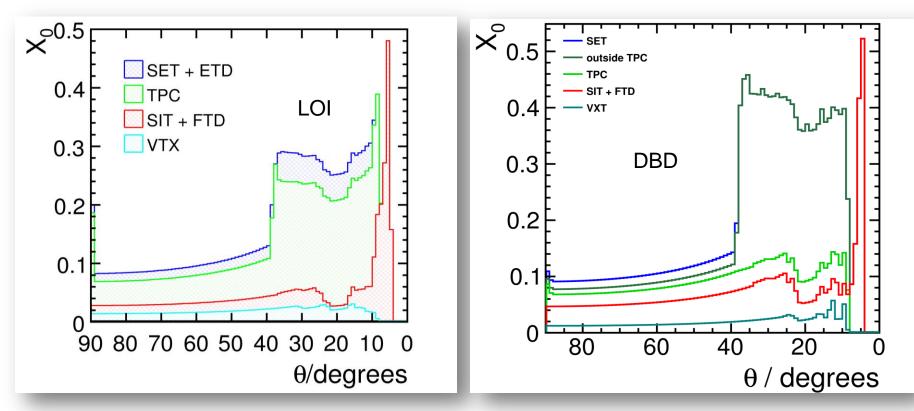
Mikael Berggren, Jenny List, Madalina Chera ECFA LC Workshop, DESY, 27-31 May 2013


Particles, Strings, and the Early Universe Collaborative Research Center SFB 676

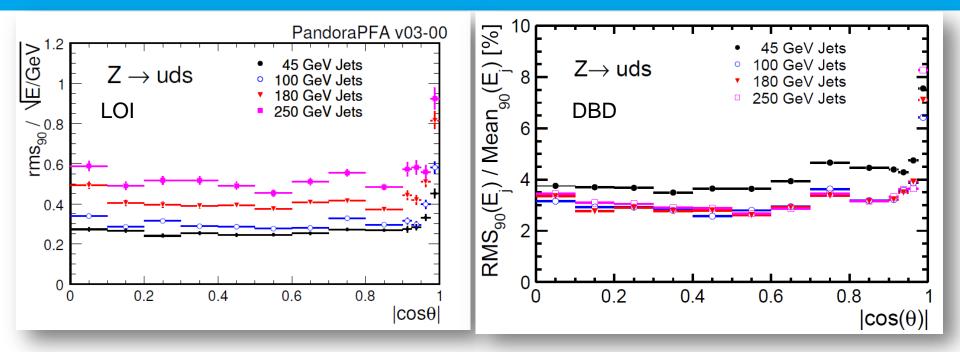
Status of LHC Searches for Direct Production of $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$


"Point 5" benchmark : gaugino pair production at ILC

http://arxiv.org/pdf/1006.3396.pdf (ILD Lol) http://arxiv.org/pdf/0911.0006v1.pdf (SiD Lol)


Motivation

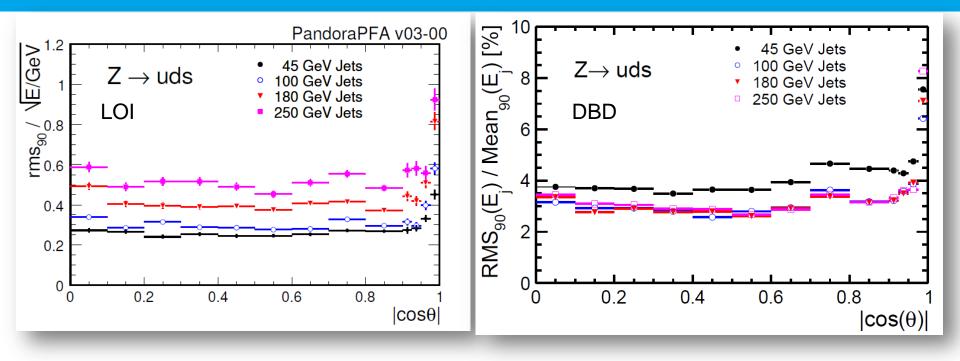
- > The "point 5" scenario is a good case for:
- studying the detector and particle flow performance
 - 2 escaping LSP's → missing energy
 - hadronic decay of gauge bosons
 - goal: clearly distinguish between W and Z pair events
- comparing and studying the performance of two versions of detector simulation (LOI and DBD)


Changes Between LOI and DBD

The new simulation:

- Improved detector realism: the vertexing, tracker and calorimeter components now include electronics and service materials
- New forward tracking pattern recognition
- New TPC pattern recognition

Changes Between LOI and DBD



Pandora PFANew: improved jet energy resolution

Jet Energy [GeV]	σ_{Ej}/E_j [LOI]	σ_{Ej}/E_j [DBD]
45	3.71±0.05 %	3.66±0.05 %
100	2.95±0.04 %	2.83±0.04 %
180	2.99±0.04 %	2.86±0.04 %
250	3.17±0.05 %	2.95±0.04 %

Changes Between LOI and DBD

Discuss gaugino mass and cross section measurements performed with both software versions!

Monte Carlo Sample

Signal:

 $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \Rightarrow \tilde{\chi}_1^\pm \rightarrow \tilde{\chi}_1^0 W^\pm [BR = 99.4\%]$ $\sigma(\tilde{\chi}^{\pm}_{1}) = 132.16 \, fb^{-1}$ $e^+e^- \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_2^0 \Rightarrow \tilde{\chi}_2^0 \rightarrow \tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 Z^0 [BR = 96.4\%]$ $\sigma(\tilde{\chi}^{0}{}_{2}) = 23.29 \, fb^{-1}$ $\int \mathcal{L} = 500 \text{ fb}^{-1} @ \sqrt{s} = 500 \text{ GeV}$

~ 34000 signal events

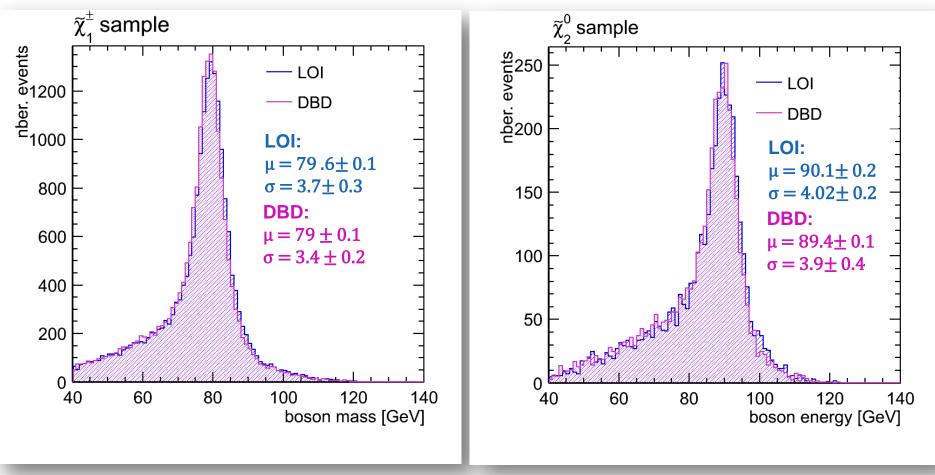
LOI sample:

- Redid the signal ntuples
- The jet energy scale was raised by 1%
- NO $\gamma\gamma$ background overlay

> DBD sample:

P(e+, e-) = (30%, -80%)

- Used the LOI generator files (signal only) in order to have the same beam spectrum
- Re-simulated and re-reconstructed the signal sample without $\gamma\gamma$ background overlay
- The jet energy scale was NOT increased
- Used the LOI SM background samples •

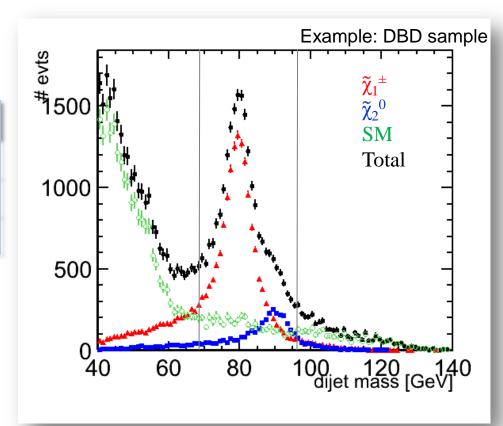

$\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ Pair Production at the ILC

- The fully hadronic decay modes of the on shell gauge bosons were chosen as signal
- > Signal topology: 4 jets and missing energy
- > Background:
 - SM 4f background is dominant
 - Each signal channel acts as background to the other!
- Event preselection apply cuts on:
 - Number of tracks in event and per jet
 - Minimum number of PFOs per jet = 3
 - Minimum jet energy and |cos(θ)_{jet}|
 - |cos(θ)_{pmiss}|< 0.99</p>
 - 100 GeV < E_{visible} < 300 GeV</p>
 - M_{missing} > 220 GeV
- > Perform kinematic fit using Marlin KinFit: equal mass constraint (determine best jet pairing)
 - Apply cut on converged kinematic fit

$\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ Cross Section Measurement

> Use dijet mass to separate $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ events \rightarrow measure cross section

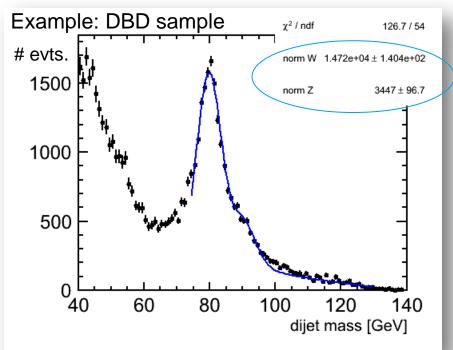
The DBD distribution appears slightly narrower and shifted towards lower energy, however the DBD and LOI distributions are compatible with each other.



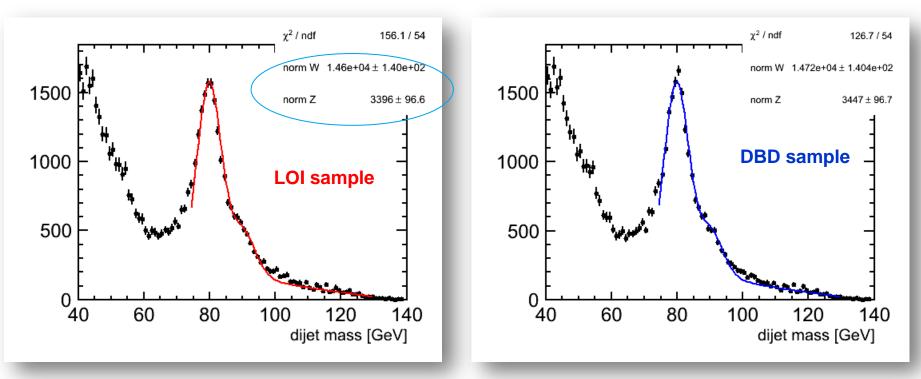
$\tilde{\chi}_1^{\,\pm}\,and\,\tilde{\chi}_2^{\,0}\,Cross\,Section\,Measurement$

> Use dijet mass to separate $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ events \rightarrow measure cross section

Obs.	DB	D	LOI		
	$\widetilde{\chi}_1^{\pm}$	$\tilde{\chi}_2^{\ 0}$	$\widetilde{\chi}_1{}^\pm$	$\tilde{\chi}_2^{\ 0}$	
Efficiency	58%	64%	57%	65%	
Purity	57%	12%	57%	13%	


Perform fit to disentangle chargino and neutralino candidates

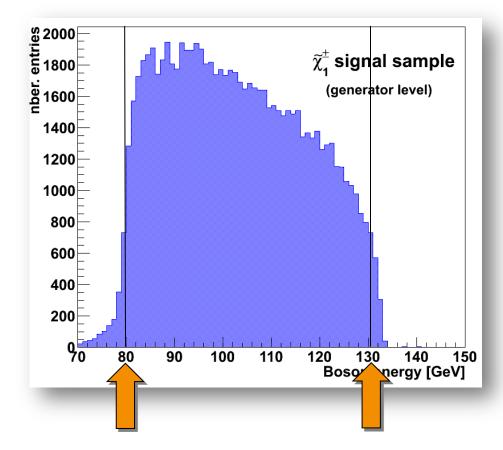
$\widetilde{\chi}_1^{\,\pm}\,and\,\widetilde{\chi}_2^{\,0}\,Cross\,Section\,Measurement$


- Separating W and Z pairs candidates:
- SM background fitted with polynomial
- Signal distributions fitted with Voigt profile
 - Width (Γ) set to boson's natural width (2.11 GeV for W and 2.5 GeV for Z
 - Voigt σ ≃ 3.5 GeV detector resolution, deduced from a SM sample. The σ from the signal only sample is in the same ballpark!
- Determine relative W/Z fractions from fit

$\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ Cross Section Measurement

Cross section calculation: determine the amount of W and Z pairs candidates.

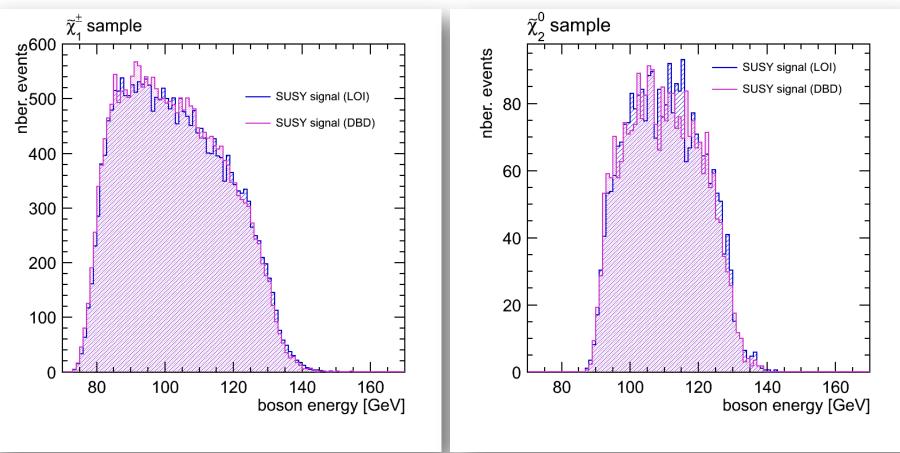
- $\sigma \sim \text{norm W} / Z \rightarrow \text{check the statistical error on norm W/Z}$
- For both LOI and DBD samples, the statistical errors are almost identical:
 - In the case of $\tilde{\chi}_1^{\pm}$: $\simeq 1 \%$
 - In the case of $\tilde{\chi}_2^0 : \simeq 2.8 \%$


$\tilde{\chi}_1^{\,\pm}\,and\,\,\tilde{\chi}_2^{\,0}\,\,Mass\,\,Measurement$

- > Mass difference to LSP $(\widetilde{\chi}_1^0)$ is **larger** than
- > Observe the decays of real gauge bosons M_Z
- > 2 body decay → the edges of the energy spectrum are kinematically determined
- > Use dijet energy spectrum "end points" in order to calculate masses

$$\gamma = \frac{E_{beam}}{M_{\chi}}$$
$$E_{\pm} = \gamma \cdot EV^{*} \pm \gamma \cdot \beta \cdot \sqrt{E_{V}^{*2} - M_{V}^{2}}$$

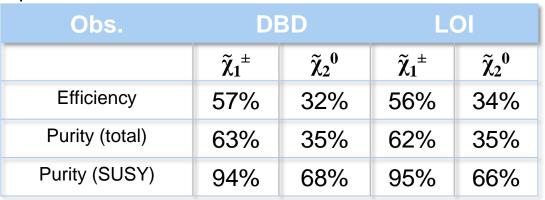
Real edge values [GeV]:

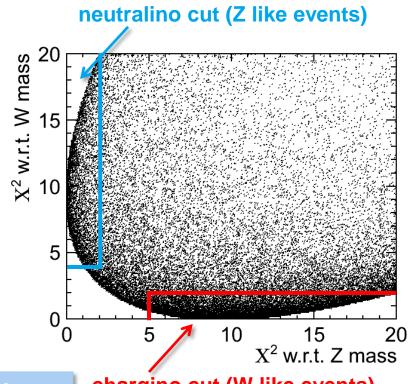

W _{low}	W _{high}	Z low	Z _{high}
80.17	131.53	93.24	129.06

$\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ Mass Measurement

> Use dijet energy to measure $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ mass

The DBD distribution appears slightly narrower and shifted towards lower energies. Nevertheless, the two distributions agree very well.

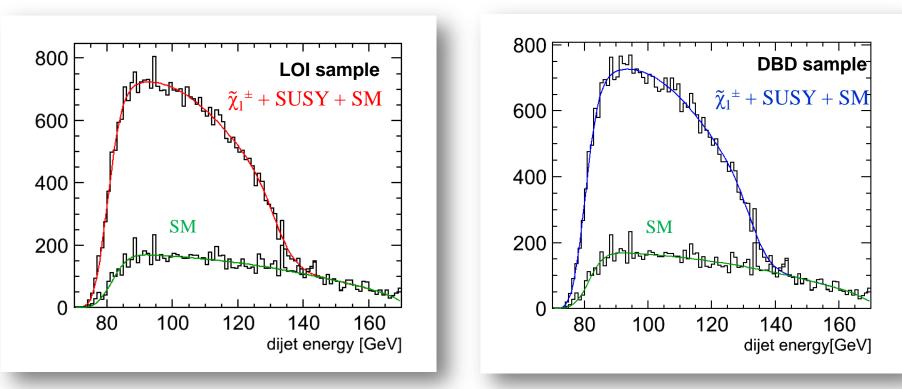

$\tilde{\chi}_1^{\,\pm}\,and\,\,\tilde{\chi}_2^{\,0}\,\,Mass\,\,Measurement$


 Calculate χ² with respect to nominal W / Z mass

$$\chi^{2}(m_{j1}, m_{j2}) = \frac{(m_{j1} - m_{V})^{2} + (m_{j2} - m_{V})^{2}}{\Box}$$

min $\chi^2 \! \rightarrow \widetilde{\chi}_1{}^{\pm} \, and \, \widetilde{\chi}_2{}^0 \, separation$

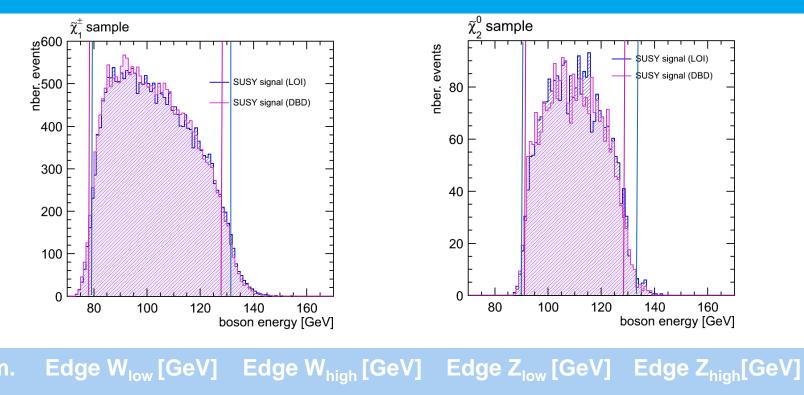
- Downside: lose statistics
 - Cut away 43% of $\tilde{\chi}_1^{\pm}$ surviving events
 - Cut away 68% of $\tilde{\chi}_2^0$ surviving events
- However, after the χ² cut, the separation is quite clear:



chargino cut (W like events)

$\widetilde{\chi}_1{}^{\pm} \, and \, \widetilde{\chi}_2{}^0 \, Mass \, Measurement$

Fit dijet energy spectrum and obtain edge positions:


$$f(x; t_{0_{1}}, b_{0_{2}}, \sigma_{1_{2}}, \gamma) = f_{SM} + \int_{t_{0}}^{t_{1}} (b_{2}t^{2} + b_{1}t + b_{0})V(x - t, \sigma(t), \gamma)dt$$

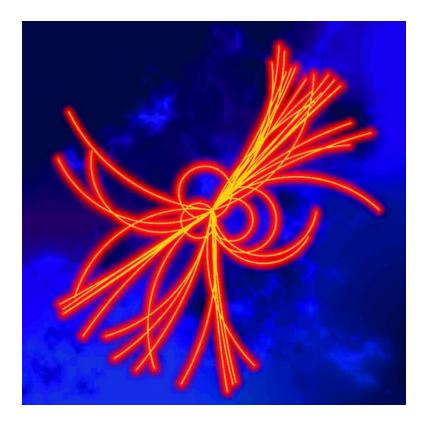
Where:

- The polynomial accounts for the top of the box spectrum
- The Voigt function accounts for the detector resolution and gauge boson width

$\widetilde{\chi}_1^{\,\pm}\,and\,\widetilde{\chi}_2^{\,0}\,Mass\,Measurement$

DBD	79.5±1.7	128.3±1.2	91.9±0.8	127.9±0.7
LOI	79.7±0.3	131.9±0.9	91.0±0.7	133.6±0.5

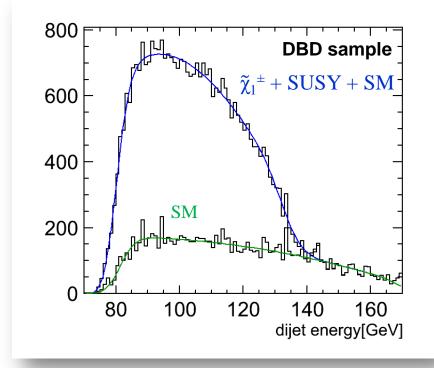
The fitting method appears to be dependent on small changes in the fitted distribution.

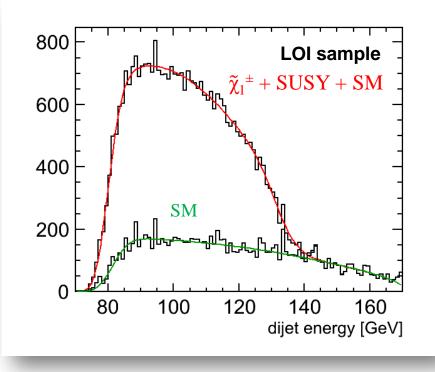

Conclusions

- Summary
 - The $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^{0}$ pair production in the framework of the "Point 5" benchmark has been presented.
 - A preliminary comparison between the LOI and DBD simulation and reconstruction has been made;
 - The DBD reconstruction and selection efficiencies are similar to the LOI analysis
 - The cross section statistical error is ~ 1% for the $\tilde{\chi}_1^{\pm}$ case and ~ 3% in the $\tilde{\chi}_2^0$ case for both simulations.
 - The DBD reconstructed boson energy spectrum is very similar to the LOI spectrum
 - However the fitting method for the mass determination appears very sensitive to small changes. A more robust method is needed.

Outlook:

- Perform 2D fit on the dijet mass plane for better accuracy in the cross section measurement.
- A mass calibration will be performed for the mass measurement.
- Consider new methods for extracting edge point positions (see talk by S. Caiazza).





Cut flow:

Cut	${\widetilde{\chi}_1}^{\pm}$ had	${\widetilde \chi_2}^0$ had	Other SUSY	SMgg	SM 8f	SM 6f	SM4f	SM2f	SM other
No cut	28548	5488	74611	2.8 e+09	945	519242	1.3e+07	8.8e+08	4.8e+06
Total # tracks > 20	27914	5449	24318	3e+06	939	493257	6.7e+06	5.3e+06	0
100 < E _{vis} < 300 Gev	27912	5449	22518	1.1e+06	79	44435	949380	1.6e+06	0
E _{jet} > 5 GeV	27906	5446	20727	908393	79	44317	905894	1.5e+06	0
$ \cos(\theta)_{\text{jets}} < 0.99$	26572	5240	19205	350316	74	41130	668947	875094	0
Y ₃₄ > 0.001	26432	5218	15255	202462	74	38760	413787	166296	0
# tracks > 2/jet	25731	5146	9559	162161	56	22752	247160	145269	0
$ \cos(\theta)_{miss} < 0.99$	25476	5099	9487	25079	56	22322	185679	4039	0
E _I < 25 GeV	25135	4981	6463	23129	32	14409	146984	3533	0
N _{PFO} > 3	250411	4975	6102	23014	32	13697	139365	3518	0
$ \cos(\theta)_{pmiss} < 0.99$	20148	4079	5179	681	26	9951	62676	529	0
M _{miss} > 220 GeV	20143	4079	5179	630	12	3687	45875	386	0
Kinfit converged	20085	4068	4999	626	12	3649	44577	341	0

$\widetilde{\chi}_1^{\,\pm}\,and\,\widetilde{\chi}_2^{\,0}\,Mass\,Measurement$

$\tilde{\chi}_1^{\pm}$ 219.832.923.13 $\tilde{\chi}_1^{\pm}$ 221.673.98 $\tilde{\chi}_0^0$ 221.713.045.21 $\tilde{\chi}_0^0$ 221.702.41	Obs.	Mass [GeV]	Error [GeV]	Diff. [GeV]	Obs.	Mass [GeV]	Error [GeV]	Diff. [GeV]
\tilde{x}_{1}^{0} 221 71 3 04 5 21 ≈ 0 221 70 2 41	$\widetilde{\chi}_1{}^{\pm}$	219.83	2.92	3.13	$\widetilde{\chi}_1{}^\pm$	221.67	3.98	4.91
χ_2 221.71 0.04 0.21 χ_2° 221.79 0.41	${\widetilde{\chi}_2}^0$	221.71	3.04	5.21	${ ilde\chi_2}^0$	221.79	3.41	5.29
$\tilde{\chi}_1^0$ 117.01 1.03 1.31 $\tilde{\chi}_1^0$ 117.94 1.09	${\widetilde{\chi}_1}^0$	117.01	1.03	1.31	${\widetilde{\chi}_1}^0$	117.94	1.09	2.24