Edu Marin

Motivation

Multipole components o ATF2 magnets

Final Double field quality

Octupole magnets

Modifying the optics

Conclusions

ECFA'13

Status of ATF2 Lattices: From Nominal to Ultra-low beta*

Edu Marin* emarinla@slac.stanford.edu

ATF Day European Linear Collider Workshop ECFA

May 29^{th} , 2013

*Acknowledgements to the ATF2 Collaboration

2 Multipole components of ATF2 magnets

Final Doublet field quality

Octupole magnets

6 Modifying the optics

6 Conclusions

Motivation

3/ 16

Edu Marin

Motivation

Multipole components of ATF2 magnets

Final Doublet field quality

Octupole magnets

Modifying the optics

Conclusions

ECFA'13

 $\mathsf{ATF2}$ is meant to demonstrate the feasibility of the FFS based on the local chromaticity correction scheme

To this end, 2 lattices have been designed:

- ATF2 Nominal lattice: it is the scale-down version of the ILC FFS
- ATF2 Ultra-low β^* lattice [†]: it is an even challenge β -optics with a chromaticity comparable to that one of CLIC

Ideal Lattice	β_x^*	$\sigma^*_x(rms)$	β_y^*	σ_y^* (rms)	L*	$\xi_y \approx \frac{L^*}{\beta_y^*}$
	[mm]	$[\mu m]$	$[\mu m]$	[nm]	[m]	[]
ATF2 Nominal	4	3.2	100	37	1.0	≈ 10000
ILC ($E_{\rm CM}=0.5~{ m TeV}$)	11	0.474	480	5.9	3.5	\approx 7300
ATF2 Ultra-low β^*	4	3.2	25	22	1.0	\approx 40000
$CLIC\ (E_{\mathrm{CM}}=3\ \mathrm{TeV})$	7	0.04	67	1.1	3.5	\approx 50000

Both ILC & CLIC projects would benefit from experiencing with a higher chromaticity lattice

[†]ATF2 Ultra-Low IP Betas Proposal, Bambade, P. et al, CLIC-Note-792 (2009)

Edu Marin

Motivation

Multipole components o ATF2 magnets

Final Double field quality

Octupole magnets

Modifying the optics

Conclusions

MULTIPOLE COMPONENTS OF ATF2 MAGNETS

Multipole components

5/1

Edu Marir

Motivation

Multipole components of ATF2 magnets

Final Doublet field quality

Octupole magnets

Modifying the optics

Conclusions

The FFS of ATF2 is composed of 3 bending, 22 quadrupoles, 5 normal and 4 skew sextupoles magnets Up to the 18th-pole component of the FFS magnets are included into the model

ATF2 Lattice	β_y^* [μ m]	σ_y^* [nm] (Mults OFF)	$\sigma_y^*(rms) \; [nm] \ (Mults \; ON)$	σ_y^* (Shi) [nm] (Mults ON)
Nominal	100	37	67	45
Ultra-low β^*	25	22	[‡] 08	42

- the 6-pole and 12-pole components of QF1FF are the most important contributors to the evaluated $\Delta \sigma_y^*$ for the ATF2-NL
- \bullet in addition, the 6-pole component of QD0FF notably increases σ_y^* for the ATF2-UL

 $^{\ddagger}R.$ Tomás, H. Braun, J.P. Delahaye, E. Marín, D. Schulte, F. Zimmermann, "ATF2 Ultra-Low IP Betas Proposal", Proceedings of PAC09, Vancouver, May 2009, pp. 2540-2542

Edu Marir

Motivation

Multipole components o ATF2 magnet

Final Double field quality

Octupole magnets

Modifying the optics

Conclusions

REPLACEMENT OF QF1FF

Replacement of QF1FF

7/10

Edu Marin

Motivation

Multipole components o ATF2 magnets

Final Doublet field quality

Octupole magnets

Modifying the optics

Conclusions

ECFA'13

It was proposed to replace the QF1FF magnet by a 4Q17 from PEP-II

	Unit	4Q17	QF1FF
Bore radius	[mm]	50	25
Iron length	[mm]	430	450
Total width	[mm]	646	450
Total height	[mm]	617	450
Weight	[Kg]	1181	400

Field quality of both quadrupole magnets

@ R=2 cm	Normal relative multipole component $[10^{-5}]$				
	Sextupolar	Octupolar	Decapolar	Dodecapolar	
Tolerance [§] .	30	12	11	3.1	
QF1FF	54	23	100	560	
4Q17	-2.3	0.76	-0.12	-1.2	
	Skew relative multipole component [10 ⁻⁵]				
Tolerance	0.8	2.1	0.6	1.9	
QF1FF	2.8	0.9	7.6	6.1	
4Q17	0.3	0.9	0.3	-0.1	

 $^{\$}$ Each tolerance represents a $\Delta\sigma_{
m v}^{*}$ =2%

QF1FF field quality

8/16

Edu Marin

Motivation

Multipole components o ATF2 magnets

Final Doublet field quality

Octupole magnets

Modifying the optics

Conclusions

The 4Q17 magnet was installed in November 2012

The motion capabilities of the QF1FF mover have been preserved thanks to a clever engineering design by the ATF staff

ATF2 lattices optimization

9/16

Edu Marin

Motivation

Multipole components o ATF2 magnets

Final Doublet field quality

Octupole magnets

Modifying the optics

Conclusions

Obtained σ^* when replacing QF1FF by the 4Q17 quadrupole:

ATF2 Nominal lattice	ATF2 Ultra-low lattice
$\sigma_{\rm x}^*=$ 3.2 $\mu{ m m}$	$\sigma_{\rm x}^*=$ 3.2 μ m
$\sigma_y^*=$ 37 nm	$\sigma_y^*=$ 31 nm

To further reduce σ_y^* of the ATF2 Ultra-low β^* lattice it would be required to replace QD0FF

Cern has designed a quadrupole based in Permanent Magnet technology \P

Permanent Material Magnet: Aperture: 40 mm Dimensions (h-w-l): 220x220x455 mm Effective length: 474 mm Gradient: 6.8 T/m Tuning: 13%

 $^{{}^{\}P}A.$ Vorozhtsov et al. Design, manufacture and measurements of permanent quadrupole magnets for Linac4, Presented at MT-22, September 2011

ATF2 Ultra-low β^* lattice with PM QD0FF

10/1

Edu Marir

Motivation

Multipole components o ATF2 magnet

Final Double field quality

Octupole magnets

Modifying the optics

Conclusions

ECFA'13

@ R=2 cm	Normal relative multipole component [10 ⁻⁴]				
	Sextupolar	Octupolar	Decapolar	Dodecapolar	
Tolerance	0.2	2.5	26.3	190	
QD0FF	3.7	1.8	5.2	56	
PM	0.8	2.5	3.2	8.0	
	Skew relative multipole component [10 ⁻⁴]				
Tolerance	0.3	3.8	32.0	230	
QD0FF	3.5	1.1	2.56	3.5	
PM	0.1	0.3	0.5	1.3	

Assuming the multipole components of the new PM QD0FF design:

ATF2 Ultra-low lattice with 4Q17 (QF1FF) and PM (QD0FF): $\sigma_x^* = 3.2 \ \mu m$ $\sigma_y^* = 26 \ nm$ (19 nm assuming $\Delta p/p=0$) \downarrow

chromatic octupole aberration

^{||}QD0FF Tolerances for CLIC, see talk by Y. Inntjore CLIC QD0 field quality requirements

Edu Marin

Motivation

Multipole components o ATF2 magnet

Final Double field quality

Octupole magnets

Modifying the optics

Conclusions

OCTUPOLE MAGNETS

Octupole correction

12/ 16

Edu Marir

Motivation

Multipole components of ATF2 magnets

Final Double field quality

Octupole magnets

Modifying the optics

Conclusions

2 octupole magnets (thin lenses) are inserted in the middle of SD0 (OCT1FF) and SD4FF (OCT2FF) dispersive and non-dispersive location

The optimization of the sextupole magnets and the pair of octupole lenses permits to obtain a:

$$\sigma_y^* = 23 \text{ nm} (\text{PM-QD0FF})$$

 $\sigma_y^* = 24 \text{ nm}$ (Installed QD0FF)

Edu Marin

Motivation

Multipole components o ATF2 magnet

Final Double field quality

Octupole magnets

Modifying the optics

Conclusions

MODIFYING THE OPTICS

Increasing β_x^*

14/1

Edu Marir

Motivation

Multipole components of ATF2 magnets

Final Double field quality

Octupole magnets

Modifying the optics

Conclusions

Alternatively the impact of the multipole components can be reduced by increasing the β_x^* Additional benefits:

- bring down the background level
- reduction of tuning difficulties

 $\begin{array}{ll} \mbox{The obtained } \sigma_y^* \mbox{ when increasing } \beta_x^* \mbox{ a factor 10, are:} \\ \mbox{ATF2 10Bx1.0By lattice}^{**} & \mbox{ATF2 10Bx0.25By lattice} \\ \sigma_y^* = 36 \mbox{ nm} & \sigma_y^* = 23 \mbox{ nm} \end{array}$

**This lattice was used during the ATF2 run in December 2012 and May 2013 (More details are given by K. Kubo, *ATF2 continuous run in May*

Edu Marin

Motivation

Multipole components o ATF2 magnet

Final Double field quality

Octupole magnets

Modifying the optics

Conclusions

CONCLUSIONS AND FUTURE WORK

Edu Marin

Motivation

- Multipole components of ATF2 magnets
- Final Doublet field quality
- Octupole magnets
- Modifying the optics

Conclusions

- Replacing the QF1FF magnet represents a step forward for the ATF2 lattices, specially for the Nominal one
- For the ultra-low β^* , the insertion of a pair of octupole magnets allows to reach a smaller beam size than replacing QD0FF magnet
- $\bullet\,$ Increasing β_x^* by a factor 10 leads to a satisfactory design of both ATF2 lattices

Follow up:

• Carry out a more realistic analysis of the octupole magnets (e.g. location, length, multipole components...)