

laboratoire systèmes et matériaux pour la mécatronique

CLIC QD0 Stabilization

J.Allibe¹, L. Brunetti¹, J.-P. Baud¹, G. Balik¹, G. Deleglise¹, A. Jeremie¹, S. Vilalte¹ B. Caron², C. Hernandez²

¹: LAPP-IN2P3-CNRS, Université de Savoie, Annecy, France & ²: SYMME-POLYTECH Annecy-Chambéry, Université de Savoie, Annecy, France

Outline

- Introduction
- IP feedback
- Active stabilization
 - Description & performances
 - Limitations
 - Work in progress
- ATF2

CLIC : stabilization challenge?

CLIC Beam dimension

$$L(\sigma_{x,y}, \Delta_{x,y}) \propto \frac{e^{-\frac{1}{4}\left(\left(\frac{\Delta x}{\sigma_x}\right)^2 + \left(\frac{\Delta y}{\sigma_y}\right)^2\right)}}{\sigma_x \sigma_y}$$

Relative mean motion between :		
	Main linac quadrupoles	Final Focus Magnets
Vertical	1.5 nm [1Hz ∞]	0.2 nm [4Hz ∞]
Lateral	5 nm [1Hz ∞]	5 nm [4Hz ∞]

Stabilization strategy

Stabilization strategy

Stabilization strategy: ground motion

lapp.

ECFA Hamburg 2013 - CLIC QD0 Stabilization

Stabilization strategy: ground motion

At the IP (mechanical stabilization + beam feedback) we aim 0,2nm at 0, I Hz

ECFA Hamburg 2013 - CLIC QD0 Stabilization

IP feedback (IPFB)

PLACET simulations (collaboration with CERN)

IP feedback (IPFB)

B. Caron et al, 2012, 236-247, Contr. Eng. Pract., 20 (3). ; G. Balik et al, 2012, N.I.M.A., 163-170

Reduction of **luminosity losses down to 2%** for different GM models

ECFA Hamburg 2013 - CLIC QD0 Stabilization

0

Active stabilization : active foot description

2013

2013-02-21 QD0 Stabilization

Active stabilization : sensors description

Active stabilization : control strategy

- ✓ Feedforward with 1 geophone and 1 accelerometer
- ✓ Feedback (loop shaping) with 1 geophone and 1 accelerometer
- \checkmark Sensors are dedicated to the selected bandwidth.

Active stabilization : Experimental set-up

Amplifiers, filters input/output board for signal conditioning

All is taken into account in simulation (noise, ADC, DAC...)

٥D

2013-02-21 QD0 Stabilization

Active stabilization : results

Simulation and experimental results (attenuation)

Attenuation up to 50dB between 1,5-100Hz

Experiment matches simulation : process well understood

Active stabilization : results

Balik et al, "Active control of a subnanometer isolator", JIMMSS. (accepted)

Active stabilization limited by Sensors ...

Tests with a low noise sensor : geophone 3ESP
 Development of a new and dedicated sensor

Active stabilization with Geophone 3ESP

2013-02-2

٩D

Active stabilization with Geophone 3ESP

Example of control with 3ESP instead of 6T

ECFA Hamburg 2013 - CLIC QD0 Stabilization

Active stabilization with geophone 3ESP

3ESP transfer function more complex up to 90Hz

- ➔ Difficulties in managing the sensor model
- ➔ limits control performance and robustness

need of a new and dedicated sensor

ECFA Hamburg 2013 - CLIC QD0 Stabilization

Dedicated sensor : Industrial solution

Managed by CERN : specifications (dedicated to main LINAC stabilization)

Parametrical study of those specifications :

resonance frequency

🕨 dampina

Specification also match the QD0 stabilization

Dedicated sensor in development at LAPP

Ist prototype: developed for process demonstration

- Dimensions 250 x 250 x 110 mm
- Promising GM measurement performances
- tunable bandwidth (<IHz to >I00Hz)

Patent is in progress, G. Deleglise, J. Allibe, G. Balik & J.P. Baud

<u>2nd version : miniaturized and optimized for control</u>

- Dimensions 100 x 100 x 100 mm
- Performances equivalent
- Mapted transfer function
- First tests in control encouraging

Next Step : Evaluation of the suitability for CLIC stabilizations in collaboration with CERN

- Further development and optimization
- Robustness, reproducibility
 - Cost ...

ECFA Hamburg 2013 - CLIC QD0 Stabilization

Two main objectives for 2016

- Demonstration of the 0.2 nm @ 4Hz with an active table (sensor, control...)
- Application on a real scale
 QD0 prototype

2012-16 Development Phase

Develop a Project Plan for a staged implementation in agreement with LHC findings; further technical developments with industry, performance studies for accelerator parts and systems, as well as for detectors.

2016-17 Decisions On the basis of LHC data and Project Plans (for CLIC and other potential projects), take decisions about next project(s) at the Energy Frontier.

2017-22 Preparation Phase

Finalise implementation parameters, Drive Beam Facility and other system verifications, site authorisation and preparation for industrial procurement.

Prepare detailed Technical Proposals for the detector-systems.

2022-23 Construction Start Ready for full construction and main tunnel excavation.

2023-2030 Construction Phase

Stage 1 construction of a 500 GeV CLIC, in parallel with detector construction. Preparation for implementation of further stages.

2030 Commissioning

From 2030, becoming ready for data-taking as the LHC programme reaches completion.

Stabilization application on QD0 prototype

Demonstration table, not made for QD0 at this state

- Mechanics : Max load of 320 kgs per table vs 1500 Kgs of QD0
- Control : problems of Eigenfrequencies, coherence of the ground...

There is a need for a QD0 prototype

Stabilization application on QD0 prototype

- Initial status: Simulation studies of QD0 made by the team of M. Modena at CERN:
 - magnetics
 - mechanics aspects

LAVISTA objective is to stabilized real scale QD0 prototype

- Development of a state-space model
- Definition of the control strategy with simulation tool integrating this space-state model
- Stabilization test on real scale « dummy QD0 magnet »

QD0 state-space model

- Adapted to control study needs (inputs/outputs)
- Select the significant modes to construct the accurate frequency response over the interest frequency range

- **State space Model** $\dot{x} = Ax + Bu$
 - ▶ FE to space-state conversion y = Cx
 - Integration in a control loop using simulink for the whole simulation

ANSYS

MAY 22 2013 20:20:41

QD0 stabilisation test bench

Simulation objective :

several aspects have to be defined before feet realization :

- Active feet : type, number, positioning
- ✤ degrees of freedom
- ✤ Type of control (SISO, MIMO)
- Conditioning, real time processing...

Dummy QD0 magnet prototype realization :

The most elementary for machining, assembling, cost and delay with most realistic :

- Dynamic behavior (Eigen-frequencies, damping...)
- Dimensions
- 🕨 Mass

Stabilization study on ATF2

14 Ground Motion sensors on ATF2 for GM Feed-forward study

A.Jeremie (LAPP) Y.Renier, K.Artoos, C.Charrondière, R.Tomas-Garcia, D.Schulte (CERN)

- <u>Goal</u>: Detect Ground Motion (GM) effect on beam trajectory.
 Vibration sensors can help with characterization of jitter sources
- Motivation : It would demonstrate possibility to make a feedforward on beam with GM sensors

 \Rightarrow trajectory correction based on GM measurements in CLIC

 \Rightarrow avoid quadrupole stabilization on CLIC ?

Since May 2013

Sensors installed : positioned at critical locations with maximum effect data acquisition on : Synchronized BPMs and GM sensors

Summary

IP feedback

PLACET simulations

(collaboration with CERN)

Active stabilization (QD0)

2012 Result : 0,6 nm RMS @ 4 Hz

2 feedback + 2 feedforward 4 sensors : 2 geophones (Guralp6T) 2 accelerometers (Wilcoxon731)

Spec : 0,2 nm RMS @ 4 Hz

Main limitations from sensors : Signal/noise ratio and transfer function complexity

New sensor dedicated to control:

- Sensor specifications have been detailed by CERN
- A sensor prototype is currently studied and developed at LAPP,

encouraging preliminary results. Future collaboration and tests with CERN are planed on this prototype.

QD0 dummy prototype

Real scale active stabilization strategy (system dimensions, multiple feet etc..)

space-state model on going prototype production before 2016

ATF2

Detect GM correlation with BPM signals.

I 5 Guralp6T sensors installed data acquisition started last week

Reduction of luminosity losses down to 2%

B. Caron et al, 2012, 236-247, Contr. Eng. Pract., 20 (3).; G. Balik et al, 2012, N.I.M. A., 163-170

for different GM models