Status of BDS (QD0 and SD0) and PCL magnet studies for CLiC

M. Modena CERN

Acknowledgments:

CERN TE-MSC CLiC Magnets Study Team: A.Aloev, A.Bartalesi, E. Solodko, P.Thonet, A.Vorozhtsov

Outline:

- 1) CLiC QD0 status
- 2) CLiC SD0 Status
- 4) Post Collision Line design status
- 5) A hybrid QD0 for ILC ? (basic conceptual design)

CLiC QD0 design in one slide

CLIC QD0 Main		100mm	Real magnet 2.7m	Geome
Parameters		prototype	Real magnet 2.7 m	9/29/20
Yoke				
Yoke length	[m]	0.1	2.7	
Coil				
Conductor size	[mm]	4×4	4×4	
Number of turns per coil		18×18=324	18×18=324	
Average turn length	[m]	0.586	5.786	
Total conductor	[m]	0.586~324~4=760	5 786~324~4=7500	
length/magnet	[III]	0.380~324~4-700	3.780~324~4-7500	
Total conductor mass/magnet	[kg]	26.8×4=107.2	265.2×4=1060.8	
Electrical parameters				
Ampere turns per pole	[A]	5000	5000	111
Current	[A]	15.432	15.432	Stool
Current density	[A/mm ²]	1	1	ZOE
Total resistance	[mOhm]	896	8836	-/850
Voltage	[V]	13.8	136.4	-200
Power	[kW]	0.213	2.1	-0.3 F

Mode	1st	2nd	3rd	4th
Freq [Hz]	190	260	310	366

Michele Modena, CERN

Status of BDS (QD0 and SD0) and PCL magnet studies for CLiC

- A short QD0 prototype (for CLiC 3TeV layout) was built at CERN in 2010-2011.
- Objective: validate the Hybrid Magnet design proposed:
 PM blocks Permendur core structure coils for tunability (low current density).
- **Two** campaign of measurements were done in 2012 in two different configuration:

- in January 2012: the QD0 equipped with Nd₂Fe₁₄B_blocks
- in August 2012: the QD0 equipped with Sm_2Co_{17} blocks .
- "Vibrating Wire" MM method was the only available due to the small magnet radius

Main Parameter	Value
Nominal field gradient	575 T/m
Magnetic length	2.73 m
Magnet aperture (for beam)	7.6 mm
Magnet bore diameter * Assuming a 0.30 mm vacuum pipe thickness	8.25 mm*
Good field region(GFR) radius	1 mm
Integrated field gradient error inside GFR	< 0.1%
Gradient adjustment required	+0 to -20%

Michele Modena, CERN

Status of BDS (QD0 and SD0) and PCL magnet studies for CLiC

CLiC QD0 Status

COMPUTED Gradient (blue curves) and MEASURED Gradient (red dots) (extrapolated from the INTEGRATED GRADIENT effectively measured), with **Sm₂Co₁₇** blocks (left) and **Nd₂Fe₁₄B** blocks (right).

- **Sm₂Co₁₇** blocks: <u>very good agreement</u> with the FEA computation.

 Nd₂Fe₁₄B blocks: <u>a difference of ~ -6% is visible.</u> Having excluded an effect due to the B-H characteristic of Permendur (we take into account the real measured B-H curve of the raw material) we think that the difference is due to <u>quality (magnetization module and/or direction)</u> of the Nd₂Fe₁₄B blocks. → We should get more indication on this by measurements of each PM insert (each one done by 4 blocks) with a 3D measuring device (based on Helmholtz coils) under purchasing by the Magnetic Measurements Section .

Michele Modena, CERN

Status of BDS (QD0 and SD0) and PCL magnet studies for CLiC

Prototype FIELD QUALITY (given as magnetic harmonic content, multipoles) versus the magnet powering: Nd₂Fe₁₄B (upper graph), Sm₂Co₁₇ (lover graph).

NOTE: the first "permitted" mutipole is b6: at NI=5000A we compute b6=1.4 units (NdFeB) and b6=0.7 units (SmCo).

Michele Modena, CERN

Status of BDS (QD0 and SD0) and PCL magnet studies for CLiC

Outline:

- 1) CLiC QD0 status
- 2) CLiC SD0 Status
- 4) Post Collision Line design status
- 5) A hybrid QD0 for ILC ? (basic conceptual design)

CLiC SD0 Status

- SDO can be also considered <u>a BDS critical magnet</u> as it is requested with the stronger as possible gradient. It is the last magnet of the BDS placed on the tunnel, just at the
- border with the experimental Hall
- Being much shorter and not placed inside the Detector, the magnet has less tight geometric boundary conditions.

Parameter	Value
Inner radius	4.3 mm
Nom. Sext. Gradient	219403 T/m2
Magnetic Length	Lm: 0.248 m

Michele Modena, CERN

Status of BDS (QD0 and SD0) and PCL magnet studies for CLiC

ECFA LC2013, 30/5/13

Optimization process provides these values : $\alpha_{in} = 18.9^{\circ}$ $\alpha_{out} = 8.4^{\circ}$ R_{out} = 40 mm

	NdFeB	SmCo
R _{out} mm	S-gradient, T	⁷ /m ²
20	217 271	200 368
40	234 438	220 891
70	235 926	222 188
90	236 000	222 188

Magnet powering curve

CLiC SD0 Status

Opt.2 S-grad 220 349 T/m²

	b6	b9	b12	b15	b18	b21
			un	its		
Opt.1 0.	097462	0.039891	-0.08626	-15.3198	0.010636	2.390928
Opt.2 0.	023376	-0.25272	0.037967	-12.5842	0.05568	1.663802
Opt.3 0.	011564	0.32237	-0.00902	-15.6347	-0.06368	2.075975
Opt.4 0.	008644	-0.25438	0.04409	0.000104	0.046933	0.037846

Opt.4 S-grad 215 785

Status of BDS (QD0 and SD0) and PCL magnet studies for CLiC

CLiC SD0 Status

- Main requirements & boundary conditions:
 - Tunability of ~ -20 %
 - Minimized vibrations (magnet should be actively stabilized)
 - Integration with the Post Collision vacuum pipe needed.
- Compactness is less critical respect to QD0.
 Magnet is placed outside the Detector on the Accelerator Tunnel border.

Prototype key aspects:

- The proposed design should permit us to investigate the <u>very precise assembly of</u> <u>several (4 or 5) longitudinal sections</u>, each equipped with PM.
- Manufacturing (with highest precision) of each Permendur sector, PM insert, "C" shape return yokes
- Measuring, Assembly and sorting of PM blocks
- Assembly of the sectors (magnetic forces between blocks impact? PM blocks are very fragile!)
- Magnetic measurements
- Final alignment

Michele Modena, CERN

Status of BDS (QD0 and SD0) and PCL magnet studies for CLiC

Outline:

- 1) CLiC QD0 status
- 2) CLiC SD0 Status
- 4) Post Collision Line design status
- 5) A hybrid QD0 for ILC ? (basic conceptual design)

Michele Modena, CERN

Status of BDS (QD0 and SD0) and PCL magnet studies for CLiC

ECFA LC2013, 30/5/13

Post Collision Line design status

14th December 2012

L. Deacon, 29th CLIC MDI meeting, CERN

6

Status of BDS (QD0 and SD0) and PCL magnet studies for CLiC

Post Collision Line design status

Parameters	UNITS	
Magnet type, name		Dipole Mag4
Full aperture (Horizontal)	[mm]	444
Effective length	[mm]	4000
Strength	[T]	0.8
	YOKE	
Yoke length	[mm]	3750
Yoke cross section area	[m ²]	2.96
Yoke mass	[kg]	87'227
	COIL	
Conductor type	"Luvata"[ID number- 8200]	30[mm]×30[mm], Ø=12[mm]
Number of turns per coil		42
Number of pancakes per coil		6
Total conductor mass	[kg]	6341
	Electrical parameters	
Current	[A]	3542
Current density	[A/mm ²]	4.5
Total resistance	[mOhm]	21.6
Total inductance	[mH]	127.5
Voltage	[V]	76.5
Power	[kW]	271
	COOLING	
Cooling circuits per magnet		12
Cooling flow per circuit	[l/min]	16.1
Temperature rise	[K]	20

CERN

MIC (Mineral Insulation Cable) technology realizations at J-PARK

Fig. 5. Newly prepared large MgO block b part of the initial drawn material.

- From the initial 7 m length a 60 m cable is obtained through double-step drawing.

SHEATH CONDUCTOR (OFC) INSULATOR (MgO) WATER HOLLOW
→ →

Nominal Current (A) 2000*	2000	2500	3000	1000	*				
Dimensions (mm)									
A: Outward Size	20.0	23.8	28.0	18.0	14.0				
B: Insulator Size	18.0	21.6	25.0	16.6	12.6				
C: Conductor Size	14.6	18.0	20.0	13.2	9.2				
Cross Sections (mm ²)									
Conductor	150.9	211.7	293.1	168.4	78.8				
Insulator	117.7	153.2	227.4	106.6	79.4				
Sheath	73.4	95.3	150.6	47.8	36.6				
*indicates Solid Condu	actor MIC	*indicates Solid Conductor MICs. No hollow is in Cu conductor.							

Fig. 2. Sizes of MIC's now available.

MgO insulator (Magnesium Oxide) – the external sheath in PDC (phosphorous deoxidized copper).

- Conductors manufactured by drawn of an initial three layer concentric structure (7 m-length and 90 mm \emptyset) made of: the conductor in OFC (oxigen free copper) – the

Magnet length:	2000 mm
Magnet bore diameter:	200 mm
Magnet weight:	33000 kg
Nominal current:	2200 A
Nominal voltage:	200 V
Nominal water pressure drop:	1.0 MPa
Required cooling water:	290 litter/min.
Cooling water temp. rise:	30 deg. centigrade
Field at pole:	1.3 tesla

PARAMETERS OF Q440MIC TYPE Q-MAGNET

Fig. 3. Unequal increase of the outward width of the 2500 A class MIC seen

(Note: targeting the 10¹⁰-10¹¹Gy absorbed dose)

CLIC PCLD meeting, 25 Aug 2011

Michele Modena, CERN TE-MSC

7

Michele Modena, CERN

Status of BDS (QD0 and SD0) and PCL magnet studies for CLiC

Studies for a possible "low consumption" alternative design initiated.

- Key aspects:
 - To provide a "low consumption" design
 - RELIABILITY is the key word for these magnets: they are very big, placed in a dumping tunnel, in a high radioactive region and interventions must be MINIMIZED.
 - The magnets could be subjected to high doses of radiation (new simulation on-going)→impact on coils.

Basic assumptions are the following:

- The simpler (and economic) cryogenic solution is to take advantage of the cryo coolants available at the IP (Detector Solenoid). They will be at 4.5 K (LHe for the solenoid) or at 40-60 K (thermal shields). Distance from the PCL magnets is 35-100m (depending by the PCL versions considered).
- In these condition the cryogenic system will consist in the cryogenic transfer line and the valve boxes for feeding the magnet coils. Other solution (cryocooler) can be also considered.
- For the magnet COILS, several possibility can be evaluated:
 - "Classic SC" solution (i.e. NbTi)
 - HTS (High Temperature Superconductor) (i.e. MgB₂,YBCO, etc.)

Each solution has advantages and disadvantages, we will try to identify them and to provide some guidelines.

Status of BDS (QD0 and SD0) and PCL magnet studies for CLiC

Outline:

- 1) CLiC QD0 status
- 2) CLiC SD0 Status
- 4) Post Collision Line design status
- 5) A hybrid QD0 for ILC ? (basic conceptual design)

A hybrid QD0 for ILC ?

A light for Science

ILC final focusing

• PM

ESRI

- Gradient 120 T/m
- Aperture 20 mm
- Tuning by 7 T/m steps

G. Le Bec - Magnet studies

European Synchrotron Radiation Facility

Status of BDS (QD0 and SD0) and PCL magnet studies for CLiC

A hybrid QD0 for ILC ?

A light for Science

State of the art **CLIC** final focusing Iron dominated, Coils + PM Gradient 525 T/m Aperture 8.25 mm Tuning range 80 % Gradient [T/m] 100 Halbach Hybrid Plannar Resistive Supercondutor 10 7 8 9 2 4 5 6 8 10 100 Aperture [mm] M. Modena, CERN, IPAC 2012 European Synchrotron Radiation Facility

G. Le Bec - Magnet studies

Michele Modena, CERN

Status of BDS (QD0 and SD0) and PCL magnet studies for CLiC

Basic ILC QD0 parameters (R. Tomas Garcia: private communication, 8 May 2013):

- Crossing angle: 14 mrad
- L* = 3.5 m
- QD0 full aperture: 2 cm
- QD0 total length: 2.2 m
- QD0 gradient: 124 T/m
- Post Collision Line vacuum pipe radius at 3.5 m: ~ 12.5 mm

We have tried to "scale" our QD0 design taking into account the geometric condition but also starting an optimization of the main parameter toward a wider field quality range for the asked tunability.

"red line" inside the aperture: area where $\Delta G/G \leq 1$ units (good field region)

NI	Α	0	1250	2500	3750	5000	6250	7500	10000	20000	40000
Gradient	T/m	34.7	42.8	67.8	97.3	125.7	145.8	152.2	160.6	169.4	174.9
b6		61.2472	45.2059	19.9428	6.8605	-0.0183	-3.3895	-4.2944	-5.3982	-6.4427	-7.0075
b10	unite	0.1978	0.1510	0.0769	0.0386	0.0215	0.0173	0.0173	0.0182	0.0201	0.0217
b14	units	0.000192	4.51E-04	8.62E-04	1.07E-03	1.16E-03	1.16E-03	0.001148	0.001123	0.001086	0.001056
b18		0.003501	2.58E-03	1.14E-03	3.89E-04	-4.59E-06	-1.98E-04	-0.00025	-0.00031	-0.00037	-0.0004

Main multipoles estimated at r = 3 mm; 5000 NI is the nominal working point (125 T/m)

A hybrid QD0 for ILC ?

In this slide the MAXIMUM GRADIENT configuration (~ 142 T/m) Poles are wider, saturation appear in some areas, field quality is deeply affected (even in these <u>IDEAL CALCULATION</u> To not forget!)

"red line" inside the aperture: area where $\Delta G/G \leq 1$ units (good field region)

NI	Α	1250	2500	3750	5000	6250	40000
Gradient	T/m	44.14719	75.58737	111.0874	142.2917	155.2365	171.4439
b6		58.93988	54.76554	48.30059	40.41387	36.75506	32.13193
b10	units	0.216246	0.14742	0.072838	0.023252	0.013356	0.011051
b14		0.001752	1.04E-03	0.000633	6.08E-04	6.24E-04	5.96E-04
b18		0.000583	5.37E-04	0.000473	3.95E-04	3.59E-04	3.13E-04

Status of BDS (QD0 and SD0) and PCL magnet studies for CLiC

Examples of the optimization done on 3 parameters ($\alpha_{in}, \alpha_{out}, \uparrow_{easy dir;}$) (*R* out=30 mm). The sets of values that maximize field quality are 32° for both $\alpha_{in}, \alpha_{out}$, and 55° for the easy dir. (1st Table)

outer angle	inner angle	easy direction	Gradient, T/m	b6, units	b10, units	b14, units	b18, units	abs(b6)
32	32	55	-125.6883919	-0.018011928	0.021495857	0.001156133	-5.42639E-06	0.018011928
14	33	37	-109.7656866	0.035278019	0.020945055	0.000970438	-1.71047E-06	0.035278019
28	28	32	-128.8464878	-0.069765144	-0.102218168	0.001223987	7.28026E-06	0.069765144

outer angle	inner angle	easy direction	Gradient, T/m	b6, units	b10, units	b14, units	b18, units
33	13	32	-142.2927103	40.41430891	0.020803327	0.001981567	-0.000987569
33	13	34	-142.2817507	40.80280099	0.024709188	0.002024723	-0.000996354
33	12	30	-142.2787609	41.64605989	0.039128861	-0.002075543	0.000436098

24

Status of BDS (QD0 and SD0) and PCL magnet studies for CLiC

A hybrid QD0 for ILC ?

Michele Modena, CERN Status of BDS (QD0 and SD0) and PCL magnet studies for CLiC

QD0:

.

.

•

۰

- About the short prototype performances with NdFeB blocks we are waiting the magnetic measurement (Helmholtz system) to investigate the PM blocks quality. Depending from results we could eventually purchase new sets of PM blocks.

- Depending from CERN-TE magn. meas. resources we could envisage other MM targeting field quality in function of: magnet working point, PM blocks quality and sorting, etc.

- Others QD0 key aspects are now moved on SD0 design and procurement.

SD0:

- Conceptual design is advancing.

- Compare to the QD0, more investigation and optimization towards field quality are now on-going. (NOTE: this is also due to improving interactions with Beam Physic Team (R. Tomas Garcia and Y. Levinsen) that provide us more details on FF magnets requirements in terms of acceptable multipoles. This is a critical aspect for our R&D).

Post Collision Line magnets:

- Waiting the official approval of the new baseline, we are advancing with studies for possible alternative dipoles design targeting: low consumption, reliability, resistance to radiation.

Hybrid QDO for ILC:

- A basic magnetic design (our design scaled to ILC geometric and strength parameters) was presented. Achievable field quality aspects were also take into account showing a possible optimization of some critical design parameters.

Thanks

Michele Modena, CERN Status of BDS (QD0 and SD0) and PCL magnet studies for CLiC

Extra slides

The "Single Stretched Wire", "Vibrating Wire" and "oscillating wire" MM Systems

Status of BDS (QD0 and SD0) and PCL magnet studies for CLiC

The "Rotated Vibrating Wire" MM System: **some basic concepts taken from a recent presentation at IMMW17 ("17th International Magnetic Measurement Workshop**")

Michele Modena, CERN

Status of BDS (QD0 and SD0) and PCL magnet studies for CLiC

Rotated Vibrating Wire (RVW)

Measure multipoles:

- 1. by means of a vibrating wire
- 2. by measuring in different positions on a circle through a simple mathematical model relating oscillation and field components

Status of BDS (QD0 and SD0) and PCL magnet studies for CLiC

The wire displacement components are proportional to the magnetic field components

$$A_x \propto B_y \qquad A_y \propto B_x$$

The amplitude **A** can be represented in the complex plane as the magnetic field:

The relative multipoles, scaled on the main component in units, are:

$$\mathbf{V}_n = P_n + iQ_n \rightarrow \mathbf{c}_n = 10^4 \frac{\mathbf{V}_n}{P_{main}} = 10^4 \left(\frac{P_n}{P_{main}} + i\frac{Q_n}{P_{main}}\right) = b_n + ia_n$$

Ν

s N

$$\mathbf{A}(z) = A_x + iA_y = \sum_{n=1}^{\infty} \mathbf{V}_n \left(\frac{\mathbf{Z}}{R_{ref}}\right)^{n-1}$$

S

 $R_{\it ref}$:reference radius

del Sannio

On each position there are two components of the wire displacement

Moving a wire on a circle fed by a sinusoidal current (in order to increase the measurement significativity)

Università degli Studi del Sannio

12/35 How to measure multipoles by vibrating wire?

On each position there are two components of the wire displacement

CLiC QD0 Status

The curves below shows the **INTEGRATED** GRADIENT measured versus the QD0 powering (total coils current NI) for both QD0 configurations; graph for $Nd_2Fe_{14}B$, upper lower graph for Sm_2Co_{17} . No demagnetization nor hysteresis effects (very interesting point) are visible gradient (same for same current all along the cycles).

Michele Modena, CERN

Status of BDS (QD0 and SD0) and PCL magnet studies for CLiC

Section view A-A Scale: 1:2

Status of BDS (QD0 and SD0) and PCL magnet studies for CLiC