Investigating Precision In-Situ \sqrt{s} Determination with $\mu^{-}\mu^{+}(\gamma)$ Events

Graham W. Wilson

University of Kansas

Abstract

Precision measurements of masses from both threshold scans and using beam energy and momentum constraints rely on knowledge of the absolute center-of-mass energy scale and the luminosity spectrum, $d\mathcal{L}/d\sqrt{s}$. These issues are central to some of the proposed measurement techniques for the W mass, the top mass and the Higgs mass at a linear collider. The process $e^-e^+ \rightarrow \mu^-\mu^+(\gamma)$ can potentially address both issues with high precision using in-situ measurements.

Previous studies have emphasized the use of the radiative-return to the Z sub-sample and the knowledge of m_Z to infer \sqrt{s} using a muon-angle based method. That method is expected to be systematically robust - but is statistically challenged due to the width of the Z and gives uncomfortably poor precision and acceptance at high \sqrt{s} .

An alternative method, investigated earlier by T. Barklow, is to directly use the muon momenta measurements. Here, I will present studies using this momenta-based method, taking into account effects from muon momentum resolution, beam energy spread, ISR, FSR and beamstrahlung. I estimate statistical errors on determining the absolute center-of-mass energy scale from these effects as a function of \sqrt{s} , illustrate how well the momentum-scale may be determined from Z (γ) events, and discuss prospects for contributing to the determination of the luminosity spectrum. Statistical uncertainties at the 10 ppm level on the effective \sqrt{s} are not out of the question.