

Status of the Micromegas SDHCAL project European Linear Collider Workshop

Iro Koletsou (Université de Savoie, CNRS) On behalf of the **LAPP LC Detector group**

Overview

- Introduction
 - Micromegas detection principle
 - integration in the ILC or CLIC project
- R&D
 - large area Micromegas detectors with integrated electronics
- Test beam
 - Response to minimum ionizing particles
 - Integration into a 1m³ calorimeter and response to hadrons
- Simulation and offline analysis
 - Improvement of the linearity using a multi-thresholds analysis
- Conclusion and plans

Micromegas detection principle

Bulk technology fabrication by the lamination of a steel woven mesh and photo-sensitive layers on a PCB

- Ionization (30 e^{-} in average for MIP)
 - In a 3mm gap of Ar
 - \circ Max drift time: 50 ns
- Woven mesh (1.1% of pad area covered by pillars)
- Multiplication (10⁴ factor)
 - \circ In a 128 μ m gap
 - \circ ~1 ns (100 ns for ions)

Hadronic calorimetry in the futur LC

• Strategy for the hadronic calorimetry:

Particle Flow technique

- Detailed shower description more important than single particle resolution
- Need of fine transverse & longitudinal segmentation for a good separation and particle identification

- sampling calorimeters
- 1x1 cm² pads
- gas detector
- digital readout

Micromegas boards

Active Sensor Units of 32x48 cm²

= PCB with 1536 pads + 1 mesh + integrated electronics

ASU are read out by 2 boards: DIF & interDIF

The MICROROC ASIC (LAPP/Omega) and the PCB

- ✓ 64 self-triggered channels with memory and time-stamping
- ✓ Low noise charge preamplifier → 1 fC threshold (0.2 MIP)
- ✓ 2 shapers : dynamic range of 20 & 100 MIP respectively
- ✓ 3 discriminators (3 possible thresholds)
- ✓ Power-pulsing functionality
- ✓ analogue readout available on PCB
- Spark protections = 1 diode network parchannel
 A
 Spark protections = 1 diode network parchannel
 Spark parchannel
 Spark protections = 1 diode network parchannel
 Spark parchannel

1m² chambers: geometry

A 1x1 m² prototype consists of 3 slabs with DIF + interDIF + ASU + ASU

- total gas volume: 3 liters
- very little dead zone (below 2%)
- fully scalable to larger sizes

The final chamber thickness is 9 mm

The drift gap is defined by **small spacers** and a frame

Readout boards (DIF+interDIF) Also provide ASIC LV & mesh HV

Performances using TB at CERN

after quality checks and calibration at LAPP

Micromegas standalone:

- threshold and gain setting
- efficiency
- multiplicity
- behavior under different rates

4 chambers integrated into a 50 layer calorimeter (46 RPS + absorbers)

- longitudinal profiles
- response and linearity

Muon Test Beam

Efficaciency > 95 % beyond 365 V

Settings:

Thresholds at 0.25 , 2 , 10 MIPs Mesh voltage at 400 V Shaper at 200 ns

Hit multiplicity < 1.2

Variations of the efficiency : 2%, 12% and 25%

Hadronic showers

Number of hits from traversing and showering pions

Average number of hits from 150 GeV pion showers

The four chambers are positioned after 2 λ_{int} of Fe, so that to study the resulting hadronic showers.

The number of hits is stabilized after a mesh voltage of 360 V. This voltage is thus enough. A higher voltage would only increase the hit multiplicity, it is thus not suggested.

I. Koletsou (LAPP), LC2013

Efficiency versus beam rate

Pions TB: shower profile

Then the four chambers are integrated into a 50 layers calorimeter.

Althound the position of the chambers is fixed, their position is always different wrt the start of the hadronic shower.

The number of hits as a function of the distance between each chamber and the start of the shower gives the longitudinal profile of the shower.

Pion shower profile LOW THRESHOLD - Micromegas in RPC-SDHCAL

Integrating these profiles we have the expected number of hits for every energy.

Data vs Monte Carlo simulation

preliminary results

Very good agreement for low and medium thresholds. Not very good description of the high threshold.

Expectations with a DHCAL (Geant 4)

Expectations with a SDHCAL 1/2

The effects of the saturation can be limited using a second higher threshold.

$$\mathsf{E}_{\mathsf{rec}} = \mathsf{w}_0 \cdot (\mathsf{N}_0 + \mathsf{w}_1 \cdot \mathsf{N}_1)$$

The weight of this threshold is computed using a MC optimization.

 \rightarrow We see that a 15 MIP second threshold is the optimal choice.

Expectations with a SDHCAL 2/2

We can achieve even better results when using a combination of three thresholds. We use both 5 and 15 MIP thresholds. $E_{rec} = W_0 \cdot (N_0 + W_1 \cdot N_1 + W_2 \cdot N_2)$ The two weights are computed using

minuit and a MC optimization.

- This could be further improved, using energy dependent characteristics ٠ of the hadron shower in a multivariable analysis
- Example: include centre of gravity of hits along shower axis in probability ٠ distribution
- Work in progress... ٠

Improvement on spark protection

Protect ASICs against sparks with resistive electrodes while minimizing charge-up effect and hit multiplicity -> try different resistive configurations and select best

The prototypes will be tested on July at DESY

Conclusions

- R&D: Micromegas chambers for a high segmentation HCAL
 - Test beam proved an excellent performance
 - Study of the longitudinal profiles of a hadronic shower
 - Confirmation of the expected saturation in higher energies
 - \circ MC study
 - Geant4 model tests
 - Offline compensation using 2 or 3 thresholds works
- Futur plans
 - Progression on the offline analysis
 - Improvement of the Micromegas chambers
 - Spark protection adding a resistive layer on the anode, instead of the diode networks
 - Construction of a larger area Micromegas with a single mesh

Backup

X-ray results of each individual chamber

- Before assembly into a 1x1m2 prototype, all chambers were tested at LAPP
- The tests used a gas mixture of Ar/CF4/iC4H10 95/3/2a 55Fe source

Parameterization of the weights

 $E_{rec} = w_0 \cdot (N_0 + w_1 \cdot N_1)$ For each energy we define the optimal value of w1 for a good energy reconstruction.

Then we parameterize the curve as a function of the total number of hits.

When reconstructing the energy, we apply the w1 value that corresponds to the total number of hits of each event.

 $E_{rec} = w_0 \cdot (N_0 + w_1 (Nhits) \cdot N_1)$