INSTITUTO TECNOLÓGICO DE ARAGÓN

Super-capacitor characterization system for FTD-ILD sub-detector power distribution system (Rad Test)

F. Arteche, C. Marinas*, A.Pradas, M. Iglesias, I.Echeverria, FJ. Piedrafita, I.Vila**

* University of Bonn, Germany
** IFCA, Santander, Spain

UNIÓN EUROPEA

"Construyendo Europa desde Aragón"

OUTLINE

CO

- 1. Introduction
- 2. Super-capacitors
 - -Main characteristics
 - -Super-capacitors characterization
- 3. Radiation tests
 - -Test set-up
 - -Test results
- 4.Conclusions

1. Introduction

- The mstrip-FTD system is a silicon strip tracker located in the innermost part of the tracker region of the ILD.
- It consists of 10 disks.
 Each disk has 16 petals

NIL

1. Introduction

- The ILC accelerator has a duty cycle of 0.5%
 - 1 ms bunch train every 200ms

- If the power demanded by the FEE is synchronized to the bunch train, it helps to save energy
- It will force to design a power supply system compatible with this operation mode
- There are several topologies that may be used for FTD.
 - DC-DC-based power distribution
 - Super-capacitor based power distribution
- Each of them has advantages and disadvantages.

1. Introduction

• A detailed comparison between both systems was presented at LCWS 2012 at Arlington DC-DC

	DC-DC	Super-caps	DCDC
Power dissipation	228 W	395 W	CableAWG18 1%
EMI phenomena	Yes	No*	
RAD tolerant	Yes	<u>?</u>	FEE 83%
Material budget	(240 DC-DC) ?	(80 SC) ?	
Reliability	?	?	SUPERCAPS 1%
Power pulse applications	Not frequent	Yes	
Installed power	1.4 kW	0.48 kW	FEE 48%
Primary PS	≈ 36 W	≈ 15 W	51%
Mains protection (UPS effect)	No	Yes	LCableAWG27 0%

European Linear Collider Workshop (ECFA 13) Desy - Hamburg, Germany, May 2013

2 Super-capacitors

- The most important element in SC-LV regulation option is the super-capacitor.
 - It is new for HEP but not for industrial applications
- There are two elements that have to be analyzed in detail for HEP applications
 - Cycling issues
 - Radiation issues
- Cycling issues (Reliability).
 - Super-capacitor should be able to operate more that 10 million of cycles per year (DC-DC too)
- Radiation issues
 - Type of radiation: Gammas & electrons
 - Total dose: 1 or 2 Mrad.

2.1 Super-capacitors: Main characteristics

- Super-capacitors are electrochemical capacitors with very high capacitance (x1000)
- The most common super-capacitor is the double layer capacitor.
- Double layer capacitor structure
 - ALU (anode)- activated carbon-SEP- activated carbon -ALU(catode)
- Most of the material of the capacitor is carbon

2.1 Super-capacitors : Main characteristics

- Main characteristics
 - It operates at low voltage Vmax = 2.7 V
 - Large number of cycles
 - It increases if it is not fully discharged
 - High efficiency (Low ESR High currents High power)
 - Temperature range 35°C up to 65 °C
 - Temperature dependence (ESR)

Performance vs. Temperature

- Super-capacitor characterization is complex
- There are a lot of methods
 - Most of them are dynamic measurements
- Each of them may present a different result
 - In some cases the difference can be higher than 50% of the nominal value.

European Linear Collider Workshop (ECFA 13) Desy - Hamburg, Germany, May 2013

- The selected method for SC characterization for HEP is constant current method.
- It consists on charging and discharging the SC continuously at a constant current
- The values of the ESR and C are calculated based on capacitor voltage.

- A power converter has been developed to test the super-capacitors for HEP applications.
- It is an automatic system that measures:
 - ESR, capacitance and capacitor temperature (synchronize)
 - It storage of the operational cycles (V, I, t)
 - High dynamic range 0.1 F up to 6500 F
- The system performs charge and discharge cycles at a constant current (0.5 A to 50 A)

European Linear Collider Workshop (ECFA 13) Desy - Hamburg, Germany, May 2013

11 de 22

3. Radiation test for Super-capacitors

- A radiation test has been carried out in order to start the super-capacitor validation for FTD-ILD
- 5 super-capacitors have been tested:
 - Different rates
 - 3 x 10 F
 - 2 x 25 F
 - Different companies
 - Maxwell
 - Nesscap
 - Panasonic

- They have been tested before and after radiation at 4
 different current rates
 - C , ESR & T

- Plots : ESR (T) / C (T) European Linear Collider Workshop (ECFA 13) Desy - Hamburg, Germany , May 2013

3.1 Radiation test for SC: Test set-up

Radiation test has been performed at Electron Stretcher Accelerator (ELSA, Bonn)

European Linear Collider Workshop (ECFA 13) Desy - Hamburg, Germany, May 2013

3.1 Radiation test for SC: Test set-up

Desy - Hamburg, Germany, May 2013

15 de 22

Desy - Hamburg, Germany, May 2013

European Linear Collider Workshop (ECFA 13) Desy - Hamburg, Germany, May 2013

17 de 22

4. Conclusions

- A first radiation test campaign has been carried out to validate super-capacitors for HEP applications.
- 5 Super-capacitors
 - Maxwell, Nesscap and Panasonic (10F & 25F)
- Tests have been performed based on constant current
 - Normal operation (2.7A, 5A)
 - Stress operation (10 A and 16 A)
 - ERS,C and T have been measured
- There was not found big difference on the main characteristics and SC performance
 - No stoppers have been found
- More tests and analysis are planned
 - Temperature & Higher dose.
- 22 de 22 Annealing effects European Linear Collider Workshop (ECFA 13) Desy - Hamburg, Germany , May 2013

