

Lessons from the ATLAS SCT alignment system for LC detector and MDI alignment

and new technology developments

Armin Reichold for the AMULET collaboration

Overview

- ATLAS SCT online FSI alignment (60%)
 - Purpose and Requirements
 - How it works
 - How it was meant to be used
 - How the SCT performed
 - How it is actually used
- Improvements in FSI technology (30%)
 - Dynamic FSI
 - Commercial availability
- Conceptual LC alignment applications & conclusions (10%)

Disclaimer

- I am not a member of the ATLAS collaboration (any more)
- I WAS involved in building the online FSI alignment system for the SCT
- Now working on new FSI technology
- Conclusions concerning ATLAS arise from contact with colleagues (<u>R. Nickerson</u>, S. Gibson, P. Coe), discussions and papers (see list at end of talk)
- ATLAS alignment pictures and graphs largely from: ## = "Rapid precise shape monitoring of the ATLAS silicon tracker", S. Gibson, see Bibliography

- Purpose:
 - Follow changes of tracking detector shape which are too fast to catch with track-based alignment
 - These were expected due to heat load variations from trigger rate changes and other sources
 - Correct detector positions during such changes
 - Statistical misalignment of tracker elements should not increase statistical error on track parameters by more than 20% at any time
 - Constrain deformation modes that are "weakly" measured by track alignment

- Resolution requirements
 - ATLAS tracker resolutions are moderate compared to LC plans
 - ATLAS Pixels: $\sigma_{r^*\phi} = 10 \ \mu m$, $\sigma_z = 115 \ \mu m$ (LC: 4-7 μm)
 - ATLAS Strips: $\sigma_{r^*\phi} = 17 \ \mu m$ (LC: 12 μm)
 - Demands on alignment accuracies for ATLAS:
 - Pixels: $\sigma_{\text{align-r}^*\phi} = 7 \ \mu m$
 - Strips: $\sigma_{align-r^*\phi} = 12 \ \mu m$

Examples of weakly constrained modes

Some types of distortions can leave the tracks helical, but systematically biased

"clocking" $\delta \phi = \lambda + \beta/R$ (VTX constraint) radial distortions (various) "telescope" δz~R ϕ dependent sagitta $\delta X=a+bR+cR^2$

These need extra handles to measure such as:

- Common vertex for a group of tracks (VTX constraint),
- Constraints on track parameters or vertex position (external tracking (TRT, Muons), calorimetery, resonance mass, etc.)
- Cosmic events (not from vertex)

• External measurements of alignment parameters (hardware alignment systems, mechanical constraints, etc). [PHYSTAT'05 proceedings] η dependent sagitta "Global twist" δφ=κRcot(θ)

global sagitta δφ=γR

- How it works
 - Geodetic grid of length between nodes on support structure
 - Frequency Scanning Interferometry (FSI) designed to measure
 842 lengths relative to stable reference interferometer
 - Monitor support structure NOT sensors (too many DOF=34,992)
 - Lengths measured "simultaneously" to a precision of < 1μ m.
 - Repeat every 10 min. to track deflections

Very Basic Principle of FSI

Ratio of phase change = Ratio of lengths

Rapid precise shape monitoring of the ATLAS silicon tracker

ATLAS SCT online alignment system: System Overview

Tuneable laser amplifier system

Stephen Gibson et al

ATLAS silicon tracker

Reference Interferometry System

- Front-end components of
 - minimal mass
 - high radiation tolerance

ATLAS SCT online alignment system How it was meant to be used

- Determine approximate FSI network geometry via:
 - Design positions
 - Photogrammetry of end views (64 markers, 20 microns transverse accuracy)
- Quasi-geodetic grid needs assumptions to solve → study structure deflections (FEA, ESPI deflection measurements)
- Relate FSI grid shape to detector
 module position

x-ray survey cancelled

- FSI monitors support shape changes
 - assume low order deflections (low spatial frequencies) of support from FEA
 - translate these into module position corrections
- Combine
 - FSI module correction every 10 min
 - track alignment of high order
 deflections (excluding low orders).

- But
- SCT is super stable:
 - stdev ~25 nm over 2
 hours before and after solenoid ramp
 - stdev < 50nm over 24 hours
 - Only few barrel interferometers shown

- And very repeatable
 - after solenoid ramp
 - return to start values
 to stdev ≈ 49nm
 around old values
 - only few barrel lines shown
 - Therefore 🗲

ATLAS SCT online alignment system How it is actually used

- FSI distortion measurements not needed during regular operation (detector too stable)
- Alignment done by tracks alone (no FSI corrections)
- FSI determines periods of stability for track alignment
- What alignment people would have liked instead:
 - FSI system more optimised to measure "weak modes"
 - ATLAS upgrade tracker will be planned with this in mind

- By now this is "old" technology
 - lasers: λ =835nm (not telecoms)
 - Slow mode hop free tuning
 - small tuning range
 - external beam splitters
 - metal reflectors
 - two fibres for each line
 - reference interferometer defines the length scale
 - but this has improved ...

New FSI technology

- FSI development continued after ATLAS
- Initially work aimed at LC applications
 - LiCAS = ILC main linac alignment
 - AMULET = FF stabilisation
 - Ended abruptly when STFC withdrew UK support for ILC
- Later work aimed at commercialisation
 - Projects: AMULET, Comet
 - new funding via EPSRC, ETALON AG, NPL
 - Aims:
 - Measure absolute length in meters traceable to SI definition
 - Measure varying length L(t) not only tolerate changes and average
 - Higher measurement frequency
 - Lower cost
 - Improve practicability (speed, analysis, handling, etc.)
 - Make it into a toolkit for metrology applications

Dynamic FSI: Schematic (Patented)

Dynamic FSI: hardware changes

- Moved to telecoms wavelength 1550nm
 - wide tuning range O(100nm)
 - fast tuning O(1000nm/s)
 - cheap lasers and other components
 - cheap extra power due to EDFA
 - Easier to be eye safe
- Both lasers present in all interferometers simultaneously (no multiplexing or chopping)
- Gas absorption cells provide length scale via physically fixed absorption features
 - naturally long term stable
 - minimal influence from environment (pressure shifts)
 - traceable to SI meter via frequency comparison
 - much cheaper & simpler than invar reference
- Fibre reference interferometers
 - stability required over O(1 sec)
 - length measured each "shot"
 - compact, cheap, coiled fibre interferometer
- Single fibre for delivery and readout
- No external beam splitter (fibre end = beam splitter)
- Use collimated beams up to 50m

Dynamic FSI: new capabilities

- Measure changing (< 19 mm/s) ABSOLUTE distances time resolved at 2.77 MHz inside each scan
- Scan resolution better than $\pm 0.1 \mu m$
- Scan repetition rates 0.1 to 10 Hz
- Absolute measurement uncertainty
 <±0.5 μm/m (at 95% CL) over life time

Dynamic FSI: verification 0.2 to 20m

Dynamic FSI: Measurement Results with commercial Multiline[™] system

 One line monitor piezo-driven vibrating target 60 cm away

5.5 µm @ 300 Hz

One line monitors linear motion of target on stepper motor stage 75-90 cm away

Monitoring of a vibrating target

Monitoring of a slowly moving target

Dynamic FSI: Commercial Multiline™ system from ATAON AG www.etalon-ag.com/index.php/en

/products/multiline

- 24 measurement lines
- Up to 88 lines with extra DAQ cards in current DAQ crate
- Laser system can power up to 200 lines
- With EDFA practically no limit on number of lines
- Extra DAQ crates attached via USB
- Fully calibrated and traceable
- Entire system in single smaller rack
- CERN and SLAC will buy

What do we need to align for LC

- Track and Vertex detectors
 - Higher resolution compared to ATLAS wants better alignment
 - Lower mass (LC vertex det = few 0.1% X0, ATLAS pixels few % X0) will make distortions bigger
 - Push-Pull makes distortions more frequent and likely
 - tracker needs to be aligned to other non-tracking detectors as well (cannot be done with track alignment)
- Entire detector needs to be aligned to beam line after push pull
- MDI elements
 - hard to reach inside detector
 - Push pull will move them around
 - see next slide for some concepts

Harry van der Graaf / NIKHEF

replace zerodure sokes with FSI lines

- lines of sight as long as you like → may go entirely outside detector
- no mass → no vibration fed into quadrupoles
- minimal cross-section → easier integration

(CLIC solution for FF pre-alignment from Lau Gatignon's talk, Tue. am)

augment Rasnik with FSI

- see motion of spoke ends
- if space found on outside:
 - extend to FSI network
 - connect network to outside world (beamline, detector)

(CLIC solution for QD0 pre-alignment from Lau Gatignon's talk, Tue. am)

no need for ring FSI markers can go directly onto quadrupole Reference Ring RR

Conclusions

- FSI technology matured and commercially available
- FSI can be a powerful tool for various alignment systems
- It is Pointless to hardware align DOF that either:
 - are readily determined by track alignment → must know track alignment capabilities
 - or do not vary significantly during operation → design of hardware alignment is also integral to design of support structure
- Weak modes can eventually be aligned with tracks but:
 - needs special constraints (invariant masses, common vertex, external tracking, calorimetry, cosmics)
 - therefore takes a lot of data over a long time
 - hardware alignment can track weak modes over long times and enable track alignment data to be used over long times
- Hardware and track alignment must be designed together with tracking mechanics
- ATLAS upgrade projects are now starting to go through this process
- ATLAS expertise grown over first run is "available and willing to help"
- Sorry: All LC alignment specific technical work unfunded in UK
- But: There is hope and there is interest ;@)

Thanks to

• The AMULET collaboration:

 John Dale¹, Ben Hughes², Andrew Lancaster³, Andrew Lewis², Armin Reichold³, Heinrich Schwenke⁴, Matt Warden¹ 1: DESY, 2:NPL, 3:Oxford JAI, 4:ETALON AG

- The ATLAS SCT alignment team
- The audience for all that patience

BACKUP SLIDES AND REPEATS FOR PDF PRINTS

Bibliography of ATLAS stuff

- Rapid precise shape monitoring of the ATLAS silicon tracker. S. Gibson
 - <u>http://indico.cern.ch/materialDisplay.py?contribId=29&sessionId=1&materialId=slides&confId=13681</u>
- Alignment of the ATLAS Inner Detector Tracking System with 2010 LHC proton-proton collisions at Vs = 7 TeV
 - ATLAS-CONF-2011-012
- First data from the ATLAS Inner Detector FSI Alignment System
 - http://www-conf.kek.jp/past/iwaa08/papers/FR002.pdf
 - <u>http://www-conf.kek.jp/past/iwaa08/presents/FR002_talk.pdf</u>
- Study of alignment-related systematic effects on the ATLAS Inner Detector track reconstruction,
 - <u>http://inspirehep.net/record/1204342/files/ATLAS-CONF-2012-141.pdf</u>
- A NOVEL METHOD FOR ATLAS FSI ALIGNMENT BASED ON RAPID, DIRECT PHASE MONITORING,
 - <u>http://cds.cern.ch/record/1305878/files/ATL-INDET-PROC-2010-037.pdf</u>
 - <u>http://cds.cern.ch/record/1291618/files/</u>

Dynamic FSI: Commercial Multiline™ system from ATAON AG www.etalon-ag.com/index.php/en /products/multiline

- 24 measurement lines
- Up to 88 lines with extra DAQ cards in current DAQ crate
- Laser system can power up to 200 lines
- Extra DAQ crates attached via USB
- With EDFA practically no limit on number of lines
- Fully calibrated and traceable
- Entire system in single small rack
- CERN and SLAC will buy

What do we need to align for LC

- A word on FF stabilisation
 - Continuous dynamic FSI exists (thesis A. Lancaster)
 - Higher resolutions are coming available (thesis A. Lancaster)
 - Combinations with classical interferometry are being tested → nm resolutions are the aim
- Sorry: All LC alignment specific technical work currently unfunded
- But: There is hope and there is interest ;@)

End-cap FSI (1/18)

##

- ATLAS FSI operation methods
 - "Absolute mode":
 - Measure OPD ratio of unknown interferometer to stabilised, evacuated reference interferometer
 - one length measurement every frequency scan O(once per 8 minutes)
 - sub-micron sensitivity (varies with signal to noise)
 - "Vibrato mode":
 - Relative change of measurement interferometer length
 - Once every 8 seconds
 - 50nm sensitivity

Conventional FSI for absolute distance measurement

• Measure absolute length D every 8 minutes. (wrt reference)

Cons:

νΔD term is cancelled using two lasers and a wavemeter.

Pros:

- Precise absolute measurement, D.
- Can power cycle laser without loss of precision.
- Excellent for long term monitoring.
- Need large Δv & two lasers to reduce systematic errors arising from ΔD .
- Slow, about 8 minutes per measurement.
- Remaining errors are largest when the components are moving: limits resolution during interesting rapid events.

Novel method for precise displacement measurement

- Like a vibrato note!
- All and a set of the s
- Rapidly oscillate laser frequency over small range (<10 GHz).

- Measure relative displacement ΔD every 8 seconds.
- $D\Delta v$ term is corrected using reference interferometer system.

Pros:

- Rapid, relative measurement, ΔD .
- Sensitive to length changes at a fraction of wavelength (typ.< 50 nanometers)
- Excellent for ultra-precise short term monitoring.
- Simplified setup (single laser, small Δν)

Cons:

- Lasers must run continuously, otherwise reference point it lost.
- May miscount fringes in rare case movements are extremely rapid (>λ/2 over 8s sampling time).

Two colour laser amplifier system

Stephen Gibson et al

ATLAS silicon tracker

Two colour laser amplifier system

Stephen Gibson et al

42

Reference Interferometry System

short interferometer

Two vernier etalons

Long interferometer

piezo

- Super-invar rods
- Fibre collimators provides low M² beam.
- Super-invar / steel thermally compensating design to balance CTEs. $\Delta T(C_1L_1 C_2L_2) = 0$.
- Both interferometers have four-fibre read-out for instantaneous phase measurement.
- Long reference has piezo for phase stepping.

