Taikan Suehara Tohoku University

-1111-

ILD: A detector for particle flow

ILD in DBD

22 22 200

0

ILD Timelines/Workshops 2007 Unification of GLD & LDC - 2008.1 ILDWS DESY - 2008.9 ILDWS Cambridge Intensive physics)ete - 2009.2 ILDWS Seoul studies for Lol 2009.3 Letter of Intent - 2010.1 ILDWS Paris - 2011.5 ILDWS Orsay Intensive physics - 2012.4 ILDWS Kyushu studies for DBD 2012.12 DBD Report

Workshop

yushu University. Fukua

DBD ILD detector

Concept is not so changed from LoI, but much more reality included Optimized for not only 500 GeV but also 1 TeV

ILD is larger than SiD Components:

- Vertex
- Silicon tracking (SIT/SET/ETD/FTD)
- Gas TPC
- ECAL/HCAL/FCAL
- SC Coil (3.5 Tesla)
- Muon in Iron Yoke

13 @ DESY, 27 May 2013 page 4

ILD Tracking System

1. Vertex Detector

Target: 5 μ m IP resolution for high-p tracks within high background environment

3 x 2 layers: r = 16 & 18, 35 & 37, 58 & 60 mm (option: equally spaced 5 layers at 15-60 mm) Length: 125 mm (first 2 layers) & 250 mm (others) cosθ up to 0.9-0.97 is covered

Technology	CMOS	FPCCD	DEPFET
Pixel size	17 / 34 μm	5 / 10 μm	20 µm
Readout time	50 / 100 μs	Slow (intra-train)	50 / 100 μs
Resolution	2.8 / 4 μm	1.4 / 2.9 μm	Similar to CMOS
Occupancy	OK	ОК	OK
Temperature, heat	30 C, 10 W	-40 C, 35 W	30 C, 10 W
Cooling	Air or N ₂	CO ₂ (two phase)	Air or N ₂
Radiation	Tested	Will be checked	Tested
Technology	Matured	Developing	Used in Belle2

2. Silicon Tracking

Detectors

- SIT 2 double layers of strips between VTX & TPC
- SET, ETD 1 layer strip after TPC (barrel, endcap)
- FTD 7 discs
 - Inner 2 discs: pixel (similar to the vertex detector)
 - Outer 5 discs: strip (similar to SIT/SET/ETD)

Functions / merits

- Time stamping (80 ns standalone, 2 ns with TPC)
- Precise points (7 μ m) to connect VTX/TPC/ECAL
- Calibration of TPC

Close collaboration with SiLC / SiD / LHC groups

3. Time Projection Chamber Target: δ(1/p_T) ~ 10⁻⁴ /GeV/c (TPC only)

TPC characteristics:

- Continuous tracks strong for off-axis tracks
- PID by dE/dx possible
- Low material in barrel region TPC options/issues
- Field distortion by ions
 - Primary ion effect is not critical
 - ion-gate to avoid secondary ion
- Gas amplification
 - Micromegas
 - GEM
- Readout
 - Pad (1 x 6 mm²)
 - Pixel

track at test beamTaikan Suehara, ECFA2013 @ DESY, 27 May 2013 page 8

Tracking Software / Performance

Current design of the tracking

- Silicon tracking

 (pattern rec. + Kalman)
 using VTX + SIT + FTD
 -> SiTracks
- Clupatra for TPC tracking
- Refitting SiTracks and TPC tracks

impact parameter resolution

tracking efficiency on ttbar events track momentum resolution with pair-bg overlayed Taikan Suehara, ECFA2013 @ DESY, 27 May 2013 page 9

ILD Calorimeter System

Highly granular calorimetry is essential to Particle Flow. Good coverage in forward region is also important.

ECAL, HCAL, FCAL(LumiCal, LHCAL, BeamCal)

1. Electromagnetic Calorimeter

Granularity of ECAL is critical for PFA -> 5 mm "pixel" for ILD Two options

Silicon tiles

Scintillator strips • Beam test at larger tiles gives $\sigma \sim 15 \% / \sqrt{E}$ with good linearity in both

Fungsten W structure

	SiECAL	ScECAL	
Absorber		Tungsten	₩ <u>3.5</u>
Sensor	Si tile	Plastic sci. strip	uds91GeV
Granularity	5 x 5 mm ²	5 x 45 mm ²	uds200GeV vds360GeV ↓ uds360GeV
Perf. at Z pole qq	~4%	~4%	2.5 0 0.2 0.4 0.6 0.8 1 Sc/(Sc+Si
Perf. at high E qq	better	moderate (optimization needed)	Hybrid option is being investigated
	Taika	an Suehara, ECFA2013 @ DES	SY, zi iviay $zui = paye i i$

2. Hadron Calorimeter

Particle separation at HCAL is also very important in PFA resolution Two options: Analog HCAL vs. Semi-Digital HCAL

ms9

	AHCAL	SDHCAL	AHCAL	Reflector Foils Flexlead on 0.8mm connecto UV LED
Absorber	Iron, 2 cm thick	x 48 layers, 6 λ_0		ion- ibsorber
Sensor	Sci + SiPM	Glass RPC		5.4mm
Granularity	3 x 3 cm ²	1 x 1 cm ²		in mm, not in scale
Readout	analog	2-bit	s and a second	SPIROC2
Cost	Moderate	Moderate		Tile with SiPM HBU, 0.9mm thick (Printed Circuit Board)
Cell sizes optim	ized for	5 b) • 45 GeV Jets		▼ Teala_NP0_Semi-Digital_tcm

Cell sizes optimized for AHCAL as 3x3 by jets, and 1x1 by kaon for SDHCAL Similar result shown in ttbar analysis at 500 GeV

Particle Flow Performance

Particle flow (PandoraPFA) is updated from LoI, gives better performance esp. at higher energies

Other Components

Coil/Yoke/Muon

- Coil: 4 Tesla design (ILD nominal: 3.5 T) with integrated Anti-DID
- Yoke: Fe + Muon sandwich
- Muon: Sci (7-10 x 27-30 mm) or RPC (1 x 1 cm², 1-bit) worked also as tail catcher of HCAL
- FCAL (LumiCal/BeamCal) for e⁺e⁻ pair and two-γ tag
 - LumiCal: Silicon pads with 10-bit readout
 - BeamCal: GaAs or
 CVD diamond _T

ILD Engineering Study

- "First engineering model" appeared after studies on
 - Mechanical Structure, Support Structure
 - Cabling, Cooling, Power pulsing
 - Detector Integration, Installation
 - Detector Alignment, Calibration, push-pull study
 - DAQ etc.
- Simulation model also gets much more reality

Software in DBD

DBD Condition

- Detector gets much reality (ladders, dead regions, etc.)
- Background included $\gamma\gamma$ ->hadrons, pairs
- Requirement of more performance

Software Updates

- Tracking rewritten from fortran to C++ for dense tracks
- PandoraPFA rewritten as modular framework
- kT jet clustering for $\gamma\gamma$ ->hadron removal
- Isolated lepton finder with lepton p_T/E after jet clustering
- Vertex clustering for better flavor tagging
- LCFIPlus (vertex finder rewritten with intensive tuning, TMVA BDT used, more input variables)

Some plots with new software

$\gamma\gamma$ ->hadron with kT jet

isolated lepton finder

Flavor tagging performance

DBD Physics Analyses

DBD detectors, $\gamma\gamma$ ->hadron overlaid (except hhh analysis)

E/L	Process	Measure	Stat. error	Comments
√s = 1	vvh->vvbb		0.54 / 2.1 %	
TeV	vvh->vvcc	ΔσΒR /σBR	5.7 / 36.8 %	
L = 0.5	vvh->vvgg		3.9 / 25.7 %	
ab ⁻¹	∨∨h->∨∨WW*(4j)	for each P	3.6 / 23.7 %	
for each	νν h-> ννμμ		41% / -	
(-80,+20) /	ee->WW	∆P/P for e-/e+	0.19 / 1.13 %	
(+80,-20)	tth	$\Delta g_{tth}/g_{tth}$	4.3 %	6 + 8 jets
500 GeV P =	tt->bbqqqq	A _{FB}	3.0 / 3.2 %	0.25 ab ⁻¹ at each pol, Consistent to Lol
(-80,+30) /	tt->bblvqq	$f A_{FB}\ \lambda_t$	1.7 / 1.3 % 3.3 / 3.7 %	0.25 ab ⁻¹ at each pol
(+80,-30)	Zhh + $vvhh$	$\Delta\lambda/\lambda$	44 %	a at anh Oah-1
1 TeV	vvhh	$\Delta\lambda/\lambda$	18 %	e _L e ⁻ _R only, 2ab '
		raikan Suena	ara, ECFAZUT3 (a) DES	or, zr way zu is page lo

1 TeV Analysis: vvh -> vvqq

H.Ono

1 TeV Analysis: vvh -> vvqq H.Ono

Template fit with b-, c-, bc- likeness; Toy-MC with 5000 data sets

1 TeV Analysis: vvh -> vvWW*

1 TeV Analysis: WW

Target: luminosity-weighted polarization measurement

Procedure:

- Use only semileptonic WW (for charge/mass reconstruction)
- Preselection by N_{PFO}, P_T, E_{vis}, m_{vis}
- Isolated lepton selection
- kT jet clustering: R=1.3, 2-jet
- 2C kinematic fit
- Tau veto & Mass & $\cos\theta_{W}$ cut Polarization calculation:
- Blondel scheme: use σ for (++),(+-),(-+),(--) = (1:1:1:1) data
- Angular fit: use cosθ_W distribution to be compared with templates (++),(+-),(-+),(--) = (1:4:4:1) or (+-),(-+) only

Taikan Suehara, EC

A.Rosca

1 TeV Analysis: tth

Direct measurement of top-Yukawa coupling N_{tth} (6qlv) = 629, n_{tth} (8q) = 653 at 500 fb⁻¹ each pol.

Procedure:

- Use 8q / 6qlv final states
- Isolated lepton search based on E_{lep}/E_{jet}
- 4-momentum cons. for p_v
- $k_T JC w/R=1.2$ for $\gamma\gamma$ ->hadron
- χ²-based jet-pair selection with b-tag value by LCFIPlus
 Variables for cuts or TMVA:
- N_{isolep} , E_{vis} , N_{PFO} , thrust
- Jet Clustering y_{ij}
- b-tag (3rd and 4th largest)
- Helicity of Higgs decay

T.Price et al.

	Efficiency	Purity	Significar
Semileptonic (Cut)	15.1%	30.6%	5.40
Hadronic (Cut)	39.1%	20.3%	7.20
Semileptonic (TMVA)	33.3%	28.0%	7.59
Hadronic (TMVA)	56.0%	25.2%	9.59

g_{tth} can be determined by 4.3% with TMVA BDT results

500 GeV: tt hadronic

To repeat the LoI analysis with improved geometry and software

Procedure:

- Signal only (no process bkg.)
 γγ -> hadron is overlaid
- 6-jet clustering by LCFIPlus (Durham based)
- 2 b-tag by LCFIPlus -> 2 tops
- χ² based jet-pair selection
- χ² cut, mass cut
- Jet charge determination (LCFIPlus)
- Calculate A_{FB}

almost the same result as LoI is obtained

jet charge distribution - consistent with Lol

P, P'	$(A_{FB}^t)_{gen.}$	A_{FB}^t	$(\delta_{A_{FB}}/A_{FB})_{stat.}$ [%]	$(\delta_{A_{FB}}/A_{FB})_{syst.}$ [%]
-1, +1	0.355	0.344	2.9 (corrected to $P, P' = -0.8, +0.3$)	0.8
+1, -1	0.438	0.443	3.2 (corrected to $P, P' = +0.8, -0.3$)	0.3

tt semileptonic at 500 GeV

Semileptonic is more suitable for A_{FB} because of easier charge determination

p, p'	$(\lambda_t)_{gen.}$	$(\lambda_t)_{rec.}$	$(\partial \lambda_t)_{stat.}$	$(\partial \lambda_t)_{syst.}$
			for $\mathcal{P}, \mathcal{P}' = \mp 0.8, \pm 0.3$	
-1, +1	-0.514	-0.476	0.011	0.011
+1, -1	0.546	0.510	0.016	0.010

usable for determining top form factors

Zhh and vvhh at 500 and 1000 GeV

500 GeV – Zhh dominant (6f – heavy tt background) 1 TeV – vvhh dominant

Condition:

- m_H = 120 GeV, 2 ab⁻¹
- no $\gamma\gamma$ -> hadrons
- Zhh: 5 categories of Z bb, qq, νν, ee, μμ
- Durham JC, LCFIPlus
- Using TMVA MLPs
 for bkg. separation

500 GeV r	esult		J.Tia
category	S	В	S/√B
bbbbbb	13.6	30.7	2.2
qqbbbb	18.8	90.6	1.9
vvbbbb	8.5	7.9	2.5
eebbbb	3.7	4.3	1.5
μμbbbb	4.5	6.0	1.5

Combined: $\sigma = 0.22 \pm 0.06$ fb, 5.0 σ excess $\Delta \lambda_{hhh} / \lambda_{hhh} = 44\%$ (incl. event weighting) 1 TeV result Cf. 57% in Lol

S = 35.7, B = 33.7, 7.2 σ excess $\Delta \lambda_{hhh} / \lambda_{hhh} = 18\%$ (incl. event weighting)

better sensitivity on λ_{hhh} mainly comes from larger dependence of σ on λ_{hhh}
 Much improvement of LoI thanks to new flavor tagging & intensive optimization of analysis
 T_ε -> many ideas for improvement still under study

Reprocessing 250/350/500 GeV

- For staged construction of ILC, 250 GeV performance with latest software is critical.
- 250/350/500 GeV samples in DBD cfg. almost ready.
- Higgs recoil & Br. analysis will be redone for snowmass input
- Plenty of other physics programs still ongoing
 - tt threshold analysis at 350 GeV for top-Yukawa
 - h -> ττ analysis (3.5% obtained with LoI sample)
 (those two are also for snowmass)
 - Zhh with h->bbWW*
 - BSM searches (incl. SUSY), Exotic Higgs searches
 - more coming...

- Manpower, R&D not included
- Uncertainty: about 20%

Summary / Comment

- Many achievements in ILD DBD
 - Feasibility and realism of the detector shown
 - First engineering design completed
 - All DBD benchmarks + α covered
- Post-DBD studies include
 - Engineering study of mass production, large prototype, infrastructure etc.
 - Physics with 125 GeV Higgs and more (mainly lower energy than 1 TeV)
 - Detector optimization by physics view