ATF2

Kiyoshi KUBO 2013.05.27

Accelerator Test Facility (ATF) at KEK

- ATF
 - Designed as a prototype of damping ring and injector of LC
 - Achieved low vertical emittance ($\varepsilon_y \sim 4 \text{ pm}$, $\gamma \varepsilon_y \sim 10 \text{ nm}$)
 - R&D of various instrumentations.
- ATF2
 - Extended part of ATF designed for testing Final Focus of ILC (Local Chromatic Correction Scheme).
 - Goal 1: Small vertical beam size, ~ 40 nm
 - Goal 2: Stable beam position (with feedback), ~2 nm

Accelerator Test Facility (ATF) at KEK

Goals of ATF2 project

Goal1: Produce and Confirm Small Beam Size•37 nm (sigma) (Emittance 12 pm, beta* 0.1 mm)•Single bunch

Goal2: Produce and Confirm Stable Beam

•2 nm RMS position jitter at focal point (As required in ILC Interaction Point)

- Tail bunch(es) in multi-bunch beam with fast feedback.

Optics of ATF2 and ILC-BDS

Figure from G.White, ATF2 Technical Review, 201304

ATF2, International Collaboration Design, Construction and Operation

International Contribution, Construction

Magnets (IHEP/SLAC/KEK) Magnet Power Supply (SLAC/KEK) Final Doublet Supports and Table (LAPP) Cavity BPM System (KNU / PAL / KEK / RHUL / SLAC) Beam Size Monitor (TokyoU./KEK)

Cavity BPM (KEK,PAL) Magnet Mover (SLAC) Concrete Ba Stand (KEK)

Q magnet

(KEK, SLAC, IHEP)

Daily Operation Meeting in ATF Control Room

Measurement of Beam Size at Focal Point

Increase Laser Crossing Angle As Electron Beam Size being Squeezed

Sensitive beam size region With each crossing angle.

	174°	30°	8°	2°
Fringe pitch	266 nm	1.03µm	3.81µm	15.2µm
Minimum	25 nm	100 nm	360 nm	-
Maximum	100 nm	360 nm	-	6 µm

Beam Size [nm]

Tuning knobs

		Corrected coupling
Linear knob	Horizontal move of sextupole magnets	уу'
	vertical move of	Ey
	sextupole magnets	х'у
Non-linear	Strength change of	x'γγ'
knob	sextupole magnets	Eyy'
	Strength change of skew sextupole magnets	хху
		Exy
		EEy
		yy'y'

5 sextupole magnets (on movers) and

4 skew-sextupole magnets

Example of tuning knob scan

Example of fringe scan

<70 nm beam size confirmed first in Dec. 2012, and continuously observed

Beam size evaluated assuming no systematic error of the beam size monitor.

History of measured beam size

Multi-pole field problem and cures

Magnets have multi-pole field errors and affect beam size at focal point. Especially final h-focus magnet.

•Adopted optics of large beta-x at focal point (small beam size in the magnets and reduce effect of multi-pole field).

•Replaced final h-focus magnet (small aperture, large multipole field error) by a magnet with large aperture and small multi-pole field

•Add multi-pole field correctors (skew sextupoles)

Intensity dependence

Small beam size was observed only at low intensity. Strong intensity dependence.

Wakefield in the final focus line is suspected.

- •Low energy compared with ILC
- Long bunch length
- •High beta-function as same as ILC BDS

Cannot exclude other effects: E.G., Intra-beam scattering in the damping ring (increase horizontal emittance and momentum spread) + non-linear coupling in ATF2 beam line.

Wakefield source on mover for study and compensation

Shield of Bellows

Shields were inserted

for most of bellows in high-beta region in May 2013.

Beam size (IPBSM modulation) vs. position of wakefield source on mover

Effect of wakefield is still under investigation

Possible reason of larger size than design

- Non-linear field
 - Which cannot be corrected by our tuning knobs
 - Imperfection of tuning knob set ?
 - Higher order fields than 6-poles? (No corrector)
- Wake field
- Beam position jitter
- Systematic error of the beam size monitor

All can have significant effects.

Still under investigation.

Goal2: Beam position control in 2 nm by intra-pulse feedback

BPM resolution must be 2 nm, much better than required in ILC (~ micron).

ATF2 Intra-pulse orbit feedback

Feedback at Focal Point is being prepared (BPM resolution ~ nm)

Summary

- ATF2 Goal 1 (small beam size)
 - Achieved and continuously observed < 70 nm vertical size beam at low intensity.
 - For smaller size, and understanding intensity dependence, we are studying
 - Effect of higher order multi-pole field
 - Effect of wakefiled
 - Beam position jitter
 - Systematic error of beam size monitor
- ATF2 Goal 2 (stable beam)
 - Intra-pulse feedback demonstrated in middle of beam line.
 - Test of stabilization at focal point is being prepared and starting in this autumn.

ATF/ATF2 Plan

- Continued studies for making small beam size (Goal 1)
 Program for even smaller beam size proposed (~CLIC)
- Studies for stable beam as main program of ATF (Goal 2)
- R&D on critical instrumentation and accelerator physics for e+e- colliders.
- Other proposals
 - R&D for gamma-gamma collider
 - High field physics
 - · , , ,

ATF Control Room