Towards the exact calculation of strong field effects on polarized particles at future linear colliders

A. Hartin

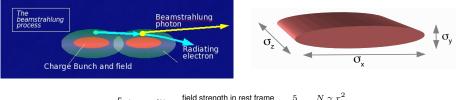
DESY

ECFA LC2013 Workshop Mar 28, 2013

Synopsis

- Strong fields in collider interactions
- Definition of a strong field
- Furry picture Exact interaction with strong fields
- Furry picture wavefunction solutions
 - known solutions
 - general method to obtain new solutions
 - new solutions in collider fields
- Furry picture transition probabilities Beamstrahlung
- IPstrong: a new event generator to produce strong field events

Strong fields at the collider interaction point

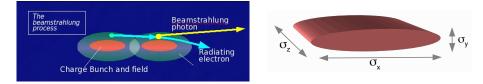


$$\Upsilon = \frac{e}{m^3} |F_{\mu\nu} p^{\nu}| \equiv \frac{\text{field strength in rest frame}}{\text{Schwinger critical field}} \approx \frac{5}{6} \frac{N \gamma r_e^2}{\alpha(\sigma_x + \sigma_y)\sigma_z}$$

Υ is a natural parameter that sets the strong field scale

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Strong fields at the collider interaction point

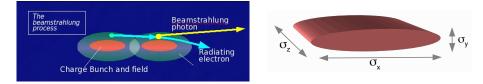


$$\Upsilon = \frac{e}{m^3} |F_{\mu\nu} p^{\nu}| \equiv \frac{\text{field strength in rest frame}}{\text{Schwinger critical field}} \approx \frac{5}{6} \frac{N \gamma r_e^2}{\alpha(\sigma_x + \sigma_y)\sigma_z}$$

Υ is a natural parameter that sets the strong field scale

Machine	LEP2	SLC	ILC	CLIC
E (GeV)	94.5	46.6	500	1500
$N(\times 10^{10})$	334	4	2	0.37
$\sigma_x, \sigma_y \; (\mu \text{m})$	190, 3	2.1, 0.9	0.49, 0.002	0.045, 0.001
$\sigma_z \text{ (mm)}$	20	1.1	0.15	0.044
Ϋ́av	0.00015	0.001	0.24	4.9

Strong fields at the collider interaction point



$$\Upsilon = \frac{e}{m^3} |F_{\mu\nu} p^{\nu}| \equiv \frac{\text{field strength in rest frame}}{\text{Schwinger critical field}} \approx \frac{5}{6} \frac{N \gamma r_e^2}{\alpha(\sigma_x + \sigma_y)\sigma_z}$$

Υ is a natural parameter that sets the strong field scale

Machine	LEP2	SLC	ILC	CLIC
E (GeV)	94.5	46.6	500	1500
$N(\times 10^{10})$	334	4	2	0.37
$\sigma_x, \sigma_y \; (\mu \text{m})$	190, 3	2.1, 0.9	0.49, 0.002	0.045, 0.001
σ_z (mm)	20	1.1	0.15	0.044
Ϋ́av	0.00015	0.001	0.24	4.9

We must develop a theory which takes into account the strong field(s) exactly

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A quasi-nonperturbative QFT - the Furry Picture

Separate Maxwell field into external (A^{ext}) and quantised (A) parts

$$\begin{split} \mathcal{L}_{\text{QED}}^{\text{Int}} = \bar{\psi}(i\partial \!\!\!/ - m)\psi - \frac{1}{4}(F_{\mu\nu})^2 - e\bar{\psi}(A^{\text{ext}} + A)\psi \\ \\ \mathcal{L}_{\text{QED}}^{\text{FP}} = \bar{\psi}^{\text{FP}}(i\partial \!\!\!/ - eA^{\text{ext}} - m)\psi^{\text{FP}} - \frac{1}{4}(F_{\mu\nu})^2 - e\bar{\psi}^{\text{FP}}A\psi^{\text{FP}} \end{split}$$

Solve, exactly equations of motion coupled to the external field

$$(i\partial \!\!\!/ - e A \!\!\!\!/ \overset{\rm ext}{-} - m) \psi^{\rm FP} = 0$$

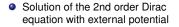
A quasi-nonperturbative QFT - the Furry Picture

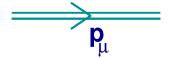
Separate Maxwell field into external (A^{ext}) and quantised (A) parts

$$\begin{split} \mathcal{L}_{\text{QED}}^{\text{Int}} = \bar{\psi}(i\partial \!\!\!/ - m)\psi - \frac{1}{4}(F_{\mu\nu})^2 - e\bar{\psi}(A^{\text{ext}} + A)\psi \\ \\ \mathcal{L}_{\text{QED}}^{\text{FP}} = \bar{\psi}^{\text{FP}}(i\partial \!\!\!/ - eA^{\text{ext}} - m)\psi^{\text{FP}} - \frac{1}{4}(F_{\mu\nu})^2 - e\bar{\psi}^{\text{FP}}A\psi^{\text{FP}} \end{split}$$

Solve, exactly equations of motion coupled to the external field

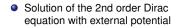




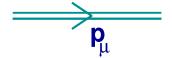


A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

크

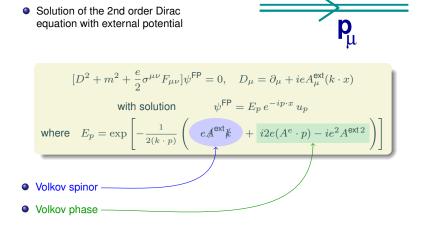


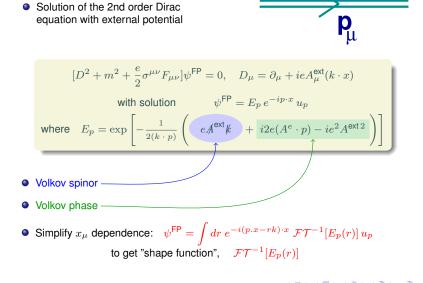
۰



< <p>> < <p>> < <p>> <</p>

$$[D^{2} + m^{2} + \frac{e}{2}\sigma^{\mu\nu}F_{\mu\nu}]\psi^{\mathsf{FP}} = 0, \quad D_{\mu} = \partial_{\mu} + ieA_{\mu}^{\mathsf{ext}}(k \cdot x)$$
with solution
$$\psi^{\mathsf{FP}} = E_{p} e^{-ip \cdot x} u_{p}$$
where
$$E_{p} = \exp\left[-\frac{1}{2(k \cdot p)}\left(eA^{\mathsf{ext}}k + i2e(A^{e} \cdot p) - ie^{2}A^{\mathsf{ext}}2\right)\right]$$
Volkov spinor





Exact Furry picture solutions

known solutions

- Single plane wave field Volkov [1935]
 - Circ/Linearly polarised field, constant field Nikishov & Ritus [1964]
 - Magnetic field Sokolov & Ternov [1974], Baier & Katkov [1973]
 - Elliptically polarised field L'yulka [1975]
- 2 collinear orthogonal fields L'yulka [1975], Pardy [2004]
- n collinear fields Hartin, Moortgat-Pick [2011]
- 2 **non**-collinear fields Hartin [in progress]

< □ > < /i>

Exact Furry picture solutions

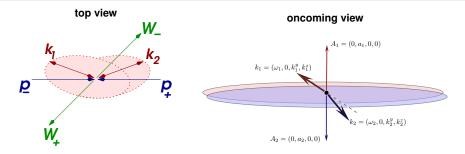
known solutions

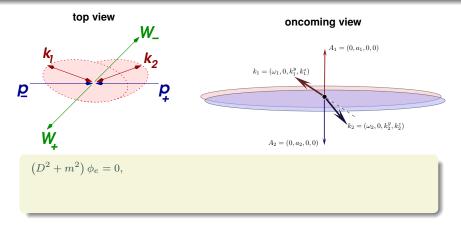
- Single plane wave field Volkov [1935]
 - Circ/Linearly polarised field, constant field Nikishov & Ritus [1964]
 - Magnetic field Sokolov & Ternov [1974], Baier & Katkov [1973]
 - Elliptically polarised field L'yulka [1975]
- 2 collinear orthogonal fields L'yulka [1975], Pardy [2004]
- n collinear fields Hartin, Moortgat-Pick [2011]
- 2 non-collinear fields Hartin [in progress]

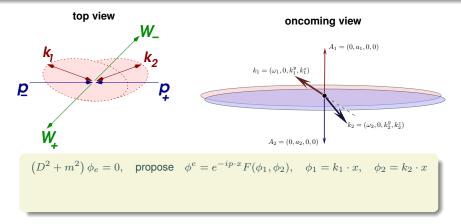
General procedure for obtaining solutions

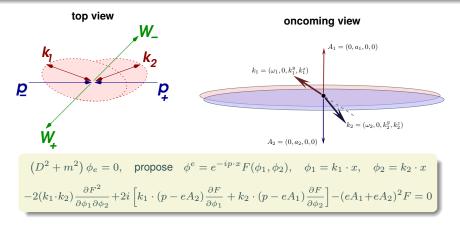
Klein-Gordon:
$$(D^2 + m^2) \phi_e = 0 \rightarrow \text{phase part}$$

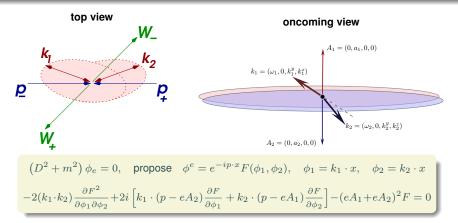
2nd order Dirac: $(D^2 + m^2 \pm \frac{ie}{2} F^{\mu\nu} \sigma_{\mu\nu}) \psi_e = 0 \rightarrow \text{spinor part}$
Dirac: $(i D - m) \psi_e = 0 \rightarrow \text{particular solution}$



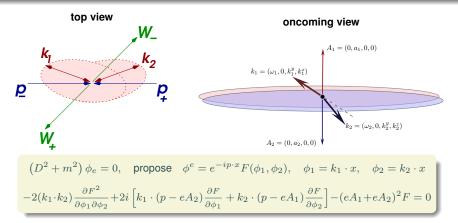








Equation	1 field Volkov	2 fields anti-collinear A	2 fields general case
Klein-Gordon	exponential	1D Gaussian	
2nd order Dirac	\checkmark	\checkmark	
Dirac Equation	\checkmark	\checkmark	
Proca equation	\checkmark		



Equation	1 field Volkov	2 fields anti-collinear A	2 fields general case
Klein-Gordon	exponential	1D Gaussian	4D Gaussian
2nd order Dirac	\checkmark	\checkmark	\checkmark
Dirac Equation	\checkmark	\checkmark	\checkmark
Proca equation	\checkmark		

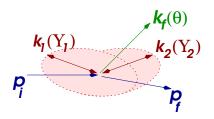
Furry Picture calculations

Field	4-momentum	Shape function
LASER	$A_{\mu}^{ext} = a_{1\mu}\cos(k \cdot x) + a_{2\mu}\sin(k \cdot x)$	Bessel
1 constant crossed	$A_{\mu}^{ext} = a_{\mu} k \cdot x$	Airy
2 non-collinear crossed	$A_{\mu}^{ext} = a_{1\mu}k_1 \cdot x + a_{2\mu}k_2 \cdot x$	Gaussian

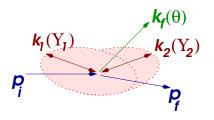
particle process	LASER fields	1 constant crossed field	2 non-collinear crossed fields
1st Order 1γ Compton 1γ pair prod	Nikishov, Ritus [1964]	Ritus [1971]	
$l^- \rightarrow W^- \nu_l$		Kurilin[2002]	
2nd order			
Moller	Oleinik[1967], Bos[1982]		
2γ Compton	Hartin [2006]		
Trident process	Hu, Müller, Keitel [2010]		
Self energy	Becker, Mitter [1976]		
Vacuum polarisation			
Higher orders photon splitting			

イロト イ団ト イヨト イヨト

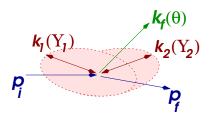
크



- first order Furry picture process
- 1-vertex permitted $\delta \left(p_i + \mathbf{rk} p_f k_f \right)$
- Coherent pair production crossing symmetry
- helicity amplitude gives rate of spin-flip
- In general two bunches, two Υ values



- first order Furry picture process
- 1-vertex permitted $\delta \left(p_i + \mathbf{rk} p_f k_f \right)$
- Coherent pair production crossing symmetry
- helicity amplitude gives rate of spin-flip
- In general two bunches, two Υ values
- Quasi-classical method: electron motion ultra-relativistic, classical, interacts with one bunch, no crossing angle
- Furry picture 1 crossed field solution: ultra-relativistic, neglect one of the bunches, any crossing angle
- Furry picture new non-collinear solutions: any kinematics, both bunches contribute

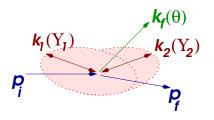


- first order Furry picture process
- 1-vertex permitted $\delta \left(p_i + \mathbf{rk} p_f k_f \right)$
- Coherent pair production crossing symmetry

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

- helicity amplitude gives rate of spin-flip
- In general two bunches, two Υ values
- Quasi-classical method: electron motion ultra-relativistic, classical, interacts with one bunch, no crossing angle
- Furry picture 1 crossed field solution: ultra-relativistic, neglect one of the bunches, any crossing angle
- Furry picture new non-collinear solutions: any kinematics, both bunches contribute

Upsilon values vary independently throughout the bunch collision

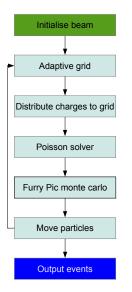


- first order Furry picture process
- 1-vertex permitted $\delta \left(p_i + \mathbf{rk} p_f k_f \right)$
- Coherent pair production crossing symmetry

- helicity amplitude gives rate of spin-flip
- In general two bunches, two Υ values
- Quasi-classical method: electron motion ultra-relativistic, classical, interacts with one bunch, no crossing angle ← simulated in CAIN/Guinea-Pig
- Furry picture 1 crossed field solution: ultra-relativistic, neglect one of the bunches, any crossing angle
- Furry picture new non-collinear solutions: any kinematics, both bunches contribute ← new simulation required

Upsilon values vary independently throughout the bunch collision

IPstrong, A new Furry picture event generator



Requirements:

We need to calculate the upsilon value at each point of a complex interaction of intense charge bunches at a collider interaction point

- Fortran 2003 with openMPI (Fortran 2008 has inbuilt gpu)
- 3D electrostatic poisson solver (MPI)
- Furry picture processes replace all other processes
- output in multiple formats (stdhep, lcio)

cross-checks with existing programs

- **Physically**, (polarised) particle processes at the IP occur in two intense non-collinear fields
- It is more **accurate** to calculate collider processes in the Furry picture

크

- Physically, (polarised) particle processes at the IP occur in two intense non-collinear fields
- It is more **accurate** to calculate collider processes in the Furry picture
- The Furry picture is a quasi nonperturbative QFT which predicts new phenomenology
- Υ is a natural parameter indicating the scale of external field effects. Highly nonlinear at $\Upsilon \approx 1$, ($\Upsilon \approx 0.24$ ILC, 4.9 CLIC)

• • • • • • • • • • • • •

- Physically, (polarised) particle processes at the IP occur in two intense non-collinear fields
- It is more **accurate** to calculate collider processes in the Furry picture
- The Furry picture is a quasi nonperturbative QFT which predicts new phenomenology
- Υ is a natural parameter indicating the scale of external field effects. Highly nonlinear at $\Upsilon \approx 1$, ($\Upsilon \approx 0.24$ ILC, 4.9 CLIC)
- New solutions for charged particles in two non-collinear crossed fields being developed
- All physics processes are to be examined using these new solutions starting with the beamstrahlung
- A new EM solver/generic event generator, **IPstrong** is being developed to model these intense field processes

• • • • • • • • • • • • •

Physics in Intense Fields

Hg) transp LoSEs and FEIs, transitions in regulate lattice, transp durge banch obligations at the nod parameterization of temps better obligates, heavy-tee collisiers, plasma acceleration and magnetics, all involve physics processes in also retensor electromyritics (dels 1 to critical importance to consider interactions with such strong helds as precisely as possible in order on indexistant equipartment of acceleration and such as on theoretical models, and this all the development of new experimental tattorization.

The purpose of this workshop is to review the state of the art in strong-field physics. Theoretical calculators, experimental tests and simulation of physics in high intervaly fields will all be exernined. PE2013 continues a series of reliated workshops held over previous years.

e welcome participation from all interested parties

< 臣 > < 臣 > … 2

A. Hartin

LC strong field effects