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Synopsis

Strong fields in collider interactions

Definition of a strong field

Furry picture - Exact interaction with strong fields

Furry picture wavefunction solutions
known solutions
general method to obtain new solutions
new solutions in collider fields

Furry picture transition probabilities - Beamstrahlung

IPstrong: a new event generator to produce strong field events
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Strong fields at the collider interaction point

σx

σyσz

Υ =
e

m3
|Fµνpν | ≡

field strength in rest frame

Schwinger critical field
≈ 5

6

N γ r2e

α(σx + σy)σz

Υ is a natural parameter that sets the strong field scale

Machine LEP2 SLC ILC CLIC
E (GeV) 94.5 46.6 500 1500
N(×1010) 334 4 2 0.37
σx, σy (µm) 190, 3 2.1, 0.9 0.49, 0.002 0.045, 0.001
σz (mm) 20 1.1 0.15 0.044

Υav 0.00015 0.001 0.24 4.9

We must develop a theory which takes into account the strong field(s) exactly
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A quasi-nonperturbative QFT - the Furry Picture

Separate Maxwell field into external (Aext) and quantised (A) parts

LInt
QED=ψ̄(i/∂−m)ψ− 1

4 (Fµν)2−eψ̄( /Aext+ /A)ψ

LFP
QED=ψ̄FP(i/∂−e /Aext−m)ψFP− 1

4 (Fµν)2−eψ̄FP /AψFP

Solve, exactly equations of motion coupled to the external field

(i/∂−e /Aext−m)ψFP = 0

Specific field 
configuration

Equations 
of Motion
Solutions

Furry Picture
Feynman 
Diagrams

S-matrix
 New processes
New Transition

Probabilities
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Lepton Volkov (1935) Solution

Solution of the 2nd order Dirac
equation with external potential p

µ

[D2 +m2 +
e

2
σµνFµν ]ψFP = 0, Dµ = ∂µ + ieAext

µ (k · x)

with solution ψFP = Ep e
−ip·x up

where Ep = exp

[
− 1

2(k · p)

(
e /A

ext/k + i2e(Ae · p)− ie2Aext 2

)]

Volkov spinor

Volkov phase

Simplify xµ dependence: ψFP =

∫
dr e−i(p.x−rk)·x FT −1[Ep(r)]up

to get ”shape function”, FT −1[Ep(r)]
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Exact Furry picture solutions

known solutions

Single plane wave field - Volkov [1935]

Circ/Linearly polarised field, constant field - Nikishov & Ritus [1964]
Magnetic field - Sokolov & Ternov [1974], Baier & Katkov [1973]
Elliptically polarised field - L’yulka [1975]

2 collinear orthogonal fields - L’yulka [1975], Pardy [2004]

n collinear fields - Hartin, Moortgat-Pick [2011]

2 non-collinear fields - Hartin [in progress]

General procedure for obtaining solutions

Klein-Gordon:
(
D2 +m2

)
φe = 0 → phase part

2nd order Dirac:
(
D2 +m2 ± ie

2
Fµνσµν

)
ψe = 0 → spinor part

Dirac:
(
i /D −m

)
ψe = 0 → particular solution
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Deriving the exact solution in two non-collinear fields
top view

W−

p
+−

p

W
+

1
k k

2

oncoming view

b

A2 = (0, a2, 0, 0)

A1 = (0, a1, 0, 0)

k1 = (ω1, 0, k
y

1
, kz

1
)

k2 = (ω2, 0, k
y

2
, kz

2
)

(
D2 +m2

)
φe = 0, propose φe = e−ip·xF (φ1, φ2), φ1 = k1 · x, φ2 = k2 · x

−2(k1 ·k2)
∂F2

∂φ1∂φ2
+2i

[
k1 · (p− eA2)

∂F

∂φ1
+ k2 · (p− eA1)

∂F

∂φ2

]
−(eA1+eA2)2F = 0

Equation 1 field 2 fields 2 fields
Volkov anti-collinear A general case

Klein-Gordon exponential 1D Gaussian

4D Gaussian

2nd order Dirac X X

X

Dirac Equation X X

X

Proca equation X
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Furry Picture calculations

Field 4-momentum Shape function

LASER Aext
µ = a1µ cos(k · x) + a2µ sin(k · x) Bessel

1 constant crossed Aext
µ = aµ k · x Airy

2 non-collinear crossed Aext
µ = a1µk1 · x+ a2µk2 · x Gaussian

particle LASER 1 constant 2 non-collinear
process fields crossed field crossed fields

1st Order
1γ Compton Nikishov, Ritus [1964] Ritus [1971]
1γ pair prod
l− →W−νl Kurilin[2002]
2nd order

Moller Oleinik[1967], Bos[1982]
2γ Compton Hartin [2006]

Trident process Hu, Müller, Keitel [2010]
Self energy Becker, Mitter [1976]

Vacuum polarisation
Higher orders
photon splitting
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A more exact Beamstrahlung calculation

p

k
2

f

i

k (θ)

(Υ )
2

k (Υ )
11

p
f

first order Furry picture process

1-vertex permitted δ
(
pi + rk − pf − kf

)
Coherent pair production crossing symmetry

helicity amplitude gives rate of spin-flip

In general two bunches, two Υ values

Quasi-classical method: electron motion ultra-relativistic, classical, interacts
with one bunch, no crossing angle

←simulated in CAIN/Guinea-Pig

Furry picture 1 crossed field solution: ultra-relativistic, neglect one of the
bunches, any crossing angle

Furry picture new non-collinear solutions: any kinematics, both bunches
contribute

←new simulation required

Upsilon values vary independently throughout the bunch collision
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IPstrong, A new Furry picture event generator

Adaptive grid

Distribute charges to grid

Poisson solver

Furry Pic monte carlo

Initialise beam

Move particles

Output events

Requirements:

We need to calculate the upsilon value at
each point of a complex interaction of intense
charge bunches at a collider interaction point

Fortran 2003 with openMPI (Fortran 2008 has
inbuilt gpu)

3D electrostatic poisson solver (MPI)

Furry picture processes replace all other
processes

output in multiple formats (stdhep, lcio)

cross-checks with existing programs
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Summary

Physically, (polarised) particle processes at the IP occur in two intense
non-collinear fields

It is more accurate to calculate collider processes in the Furry picture

The Furry picture is a quasi nonperturbative QFT which predicts new
phenomenology

Υ is a natural parameter indicating the scale of external field effects. Highly
nonlinear at Υ ≈ 1, (Υ ≈ 0.24 ILC, 4.9 CLIC)

New solutions for charged particles in two non-collinear crossed fields being
developed

All physics processes are to be examined using these new solutions - starting
with the beamstrahlung

A new EM solver/generic event generator, IPstrong is being developed to model
these intense field processes
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