How to discriminate MSSM and NMSSM? (preliminary)

Stefano Porto

with Gudrid Moortgat-Pick and Krzysztof Rolbiecki

ECFA Linear Collider Workshop 2013,

Hamburg, May 30th, 2013

Particles, Strings, and the Early Universe Collaborative Research Center SFB 676

How to discriminate MSSM and NMSSM?

- LHC and SUSY
- Strategy to distinguish between MSSM and NMSSM scenarios.
- Example of analysis.
- Conclusions and outlook.

LHC News

2012 gave us many of results from LHC, in particular:

SM-like Higgs discovery at 125 GeV

Yes, " We have it! '

• Great performance from LHCb.

- SUSY constrained minimal models, ex. cMSSM, etc under pressure. see Rachik Soualah's and Lukas Vanelderen's talks
- As well as composite models [Redi, Sanz, de Vries, Weiler '13], Little Higgs [Reuter, Tonini '12]...

BUT

SUSY is (still) one of the best in shape solutions. Much parameter regions to explore, both in MSSM and in NMSSM see Sven Heinemeyer's talk. For example

- Heavier neutral scalar option at 125 GeV.
- No lose theorems for NMSSM [Ellwanger et al.] ...

This is particulary the case if we do not assume any SUGRA, GUT or other high energy assumptions.

Also:

• Split SUSY [Wells '03], [Arkani-Hamed & Dimopoulos '04].

• Natural SUSY.

• . . .

MSSM vs NMSSM?

In case of SUSY discovery, how to distinguish between MSSM and NMSSM scenarios?

MSSM

(ℤ₃-)NMSSM

 $\begin{array}{c} h, H, A, H^{\pm}: \tan\beta, m_A \\ \tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{\pm}: M_2, \mu, \tan\beta \end{array} + \begin{array}{c} \text{S}_{1,2,3}, P_{1,2}, H_{1,2}^{\pm}: \tan\beta, \lambda, x, \kappa, A_{\lambda}, A_{\kappa} \\ + \begin{array}{c} \text{Singlino} = \\ \tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{\pm}: M_2, \lambda, x, \kappa, \tan\beta \end{array}$

Often one looks only at the Higgs scalar sector.

What if:

- Higgs spectra are not distinguishable at the LHC and LC?
- Very similar chargino/neutralino spectra?
- Close cross sections?

This is possible for unconstrained scenarios [hep-ph/0502036].

Strategy

- We measure at LHC/LC the light SUSY masses: $m_{\tilde{\chi}_{1,2}^0}, m_{\tilde{\chi}_{1}^{\pm}}, m_{\tilde{\nu}}, m_{\tilde{e}_{R,l}}$.
- At the LC:
 - We exploite polarized beams: $P_{e^-} \in [-0.9, +0.9]$, $P_{e^+} \in [-0.6, +0.6]$.
 - We measure $\sigma(e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0)$ and $\sigma(e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-)$ at $\sqrt{s} = 350, 500$ GeV.
- The strategy is to:
 - Find MSSM/NMSSM scenarios reproducing the observed spectra and cross sections.
 - Assume experimental uncertainties: $\delta m_{\tilde{\nu}_e}$, $\delta m_{\tilde{e}_L} \sim 1.5\%$; $\delta m_{\tilde{\chi}_1^\pm}$, $\delta m_{\tilde{\chi}_1^0}$, $\delta m_{\tilde{\chi}_2^0} \sim 1\%$. Polarization uncertainties give a negligible contribution. (rather conservative assumptions)
 - Fit the NMSSM theoretical values to the MSSM parameters M_1 , M_2 , μ , tan β .
 - Derive heavier MSSM chargino/neutralino masses.
 - Verification at LHC/LC.

Image: A matrix and a matrix

Very close lower MSSM/NMSSM spectra possible for unconstrained scenarios, ex: $M_1 > M_2$, contempled also in AMSB.

	<i>M</i> ₁	<i>M</i> ₂	$\mu/\mu_{eff} = \lambda \cdot x$	aneta	κ	λ
MSSM	365	142	360	8		
NMSSM	360	142	457.5	9.6	0.2	0.5

Leading to $m_h = 125$ GeV and

	$m_{\tilde{\chi}^0_1}$	$m_{ ilde{\chi}_2^0}$	$m_{ ilde{\chi}^0_3}$	$m_{ ilde{\chi}_4^0}$	$m_{ ilde{\chi}_5^0}$	$m_{\tilde{\chi}_1^{\pm}}$	$m_{\tilde{\chi}_2^{\pm}}$
MSSM	129	338	366	405		130	382
NMSSM	129	336	366	468	499	131	474

We also take $m_{\tilde{e}_L}$ =240, $m_{\tilde{e}_R}$ =224, $m_{\tilde{\nu}_e}$ =226.

Available production channels:

$$\sqrt{s} = 350 \text{ GeV}$$
: $\sigma(e^+e^-
ightarrow ilde{\chi}_1^{\pm} ilde{\chi}_1^{\pm})$.

 $\sqrt{s} = 500 \text{ GeV}: \sigma(e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0) \text{ and } \sigma(e^+e^- \rightarrow \tilde{\chi}_1^\pm \tilde{\chi}_1^\pm).$

Example: $\sigma(\mathbf{e}^+\mathbf{e}^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-)$

$\sigma(e^+e^- ightarrow { ilde \chi}_1^+ { ilde \chi}_1^-)$ at \sqrt{s} =350, 500 GeV

$\sqrt{s}=$ 350 GeV	MSSM	NMSSM
P = (0, 0)	422.2±14.6	427.8±15.2
P = (-0.9, 0.6)	1282.7±44.4	$1298.5{\pm}46.1$
P = (0.9, -0.6)	17.7±0.6	$19.2 {\pm} 0.7$

\sqrt{s} =500 GeV	MSSM	NMSSM
P = (0, 0)	302.9±3.65	313±3.85
P = (-0.9, 0.6)	920.4±10.9	951.4±11.5
P = (0.9, -0.6)	12.62±0.22	$12.69 {\pm} 0.22$
P = (-0.9, -0.6)	230.13±2.8	237.9±2.9
P = (0.9, 0.6)	48.6±0.7	$50.1 {\pm} 0.6$

- The statistic error is given by 1 σ at $\int \mathcal{L} = 500 \text{ fb}^{-1}$.
- $\delta m_{\tilde{\nu}_e}$, $\delta m_{\tilde{e}_L} = 1.5\%$, $\delta m_{\tilde{\chi}_1^{\pm}}$, $\delta m_{\tilde{\chi}_1^0}$, $\delta m_{\tilde{\chi}_2^0}$ at 1%.
- Relative error on the polarizations: $\Delta P/P = 0.5\%$, negligible.

イロト 不得下 不足下 不足下 一足

Example: $\sigma(\mathbf{e}^+\mathbf{e}^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0)$

 $\sigma(e^+e^-
ightarrow { ilde \chi}^0_1 { ilde \chi}^0_2)$ at \sqrt{s} =500 GeV:

$\sqrt{s}=$ 500 GeV	MSSM	NMSSM		
P = (0, 0)	9.45±1.41	6.05±0.86		
P = (-0.9, 0.6)	28.7±4.3	18.4±2.6		
P = (0.9, -0.6)	0.40±0.07	0.251±0.042		
P = (-0.9, -0.6)	7.18±1.08	4.59±0.66		
P = (0.9, 0.6)	1.52 ± 0.23	0.97±0.14		

- The statistic error is given by 1 σ at $\int \mathcal{L} = 500 \text{ fb}^{-1}$.
- $\delta m_{\tilde{e}_L} = 1.5\%$, $\delta m_{\tilde{\chi}^0_1}$, $\delta m_{\tilde{\chi}^0_2}$ at 1%.
- Relative error on the polarizations: $\Delta P/P = 0.5\%$, negligible.

MSSM	Ĩ	Ŵ	<i>Ĥ</i> a	Ĥ _b	NMSSM	Ĩ	Ŵ	<i>Ң</i> а	\tilde{H}_b	Ŝ
$\tilde{\chi}_1^0$	0.08%	91.8%	2.3%	5.8%	$\tilde{\chi}_1^0$	0.04%	95%	1.1%	3.4%	0.5%
$\tilde{\chi}_2^0$	58.2%	3.8%	22.8%	15.2%	$\tilde{\chi}_2^0$	0.4%	1.9%	11.4%	4.8%	42.6%
$\tilde{\chi}_{3}^{0}$	0.1%	0.96%	38.3%	<u>60.6%</u>	$\tilde{\chi}_{3}^{0}$	56%	0.2%	1.4%	0.004%	42.3%
$\tilde{\chi}_4^0$	41.6%	3.41%	36.7%	18.3%	$ ilde{\chi}_4^0$	0.1%	0.7%	39.3%	59.2%	0.6%
					$\tilde{\chi}_5^0$	4.5%	2.3%	46.7%	32.5%	13.9%

イロト 不得下 不良下 不良下 一度

Using the low spectra masses and $\sigma_{L,R}(e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-)$, $\sigma_{L,R}(e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0)$ calculated within NMSSM the we perform a χ^2 -fit on the MSSM parameters: see Krzysztof's talk

M_1	μ	
$349.1{\pm}3.7$	$135.5{\pm}0.7$	456.4±37.9

Since $\tan \beta$ is unconstrained, it is varied in [1, 60].

• $m_{\tilde{\chi}_3^0} \in [425, 500] \text{ GeV.}$ • $m_{\tilde{\chi}_4^0} \in [440, 509] \text{ GeV.}$ • $m_{\tilde{\chi}_2^\pm} \in [435, 508] \text{ GeV.}$

If we can observe $\tilde{\chi}_3^0$ (through cascades...), we assume an error $\delta m_{\tilde{\chi}_3^0} = 2\%$. We obtain, according to our MSSM and NMSSM original scenario: $m_{\tilde{\chi}_3^0} = 366 \pm 7$ GeV.

Far away by the range of the MSSM fit!!

One should look also at the gaugino/neutralino components of neutralinos:

MSSM fit	Ĩ	Ŵ	<i>Ĥ</i> a	<i>Ĥ</i> _b	NMSSM	Ĩ	Ŵ	<i>Ĥ</i> a	<i></i> Н _b	Ŝ
$\tilde{\chi}_1^0$	0.01%	96%	0.4%	3.6%	$\tilde{\chi}_1^0$	0.04%	95%	1.1%	3.4%	0.5%
$\tilde{\chi}_2^0$	93.8%	0.3%	2.3%	3.6%	$\tilde{\chi}_2^0$	0.4%	1.9%	11.4%	4.8%	42.6%
$ ilde{\chi}^0_3$	0.1%	0.9%	48.6%	50.4%	$ ilde{\chi}^0_3$	56%	0.2%	1.4%	0.004%	42.3%
$\tilde{\chi}_4^0$	6.1%	2.7%	48.8%	42.3%	$\tilde{\chi}_4^0$	0.1%	0.7%	39.3%	59.2%	0.6%
					$\tilde{\chi}_5^0$	4.5%	2.3%	46.7%	32.5%	13.9%

Exploit precision LC observables (masses, cross section, Brs ...).

For ex. gaugino properties can be determined through the hadronic decay modes see $\ensuremath{\mathsf{Madalina's talk}}$

- LHC data have severely put under pressure constrained SUSY models, not SUSY. NMSSM is a possibility.
- Unconstrained MSSM and NMSSM scenarios can lead to similar lower spectra and production cross section at LC.
- To understand the underlying model, one can exploit the power of polarized beam at the LC. Measure σ_{L,R}(e⁺e⁻ → χ̃⁰₁ χ̃⁰₂) and σ_{L,R}(e⁺e⁻ → χ̃⁺₁ χ̃⁻₁).
- Then a fit to the MSSM parameters can allow a search for heavier resonances with an interplay between LHC an the LC, giving a strong discrimination tool.

To do:

- Include other observables to perform the fits and improve the strategy.
- Extend the philosophy to the MSSM scenario. E(6)-MSSM?

Thanks!

æ

イロン イロン イヨン イヨン