Introduction Top Physics, QCD, Loopverein

Sven-Olaf Moch

Universität Hamburg & DESY, Zeuthen

ECFA Linear Collider Workshop 2013, Hamburg, May 28, 2013

Sven-Olaf Moch

Introduction – p.1

Example from LHC Higgs measurements

- Signal strength of all analyzed decay modes
 - normalization to Standard Model expectation
 - accuracy of $\sigma_{
 m SM}$ crucial

QCD factorization

$$\sigma_{pp\to X} = \sum_{ij} f_i(\mu^2) \otimes f_j(\mu^2) \otimes \hat{\sigma}_{ij\to X} \left(\alpha_s(\mu^2), Q^2, \mu^2, m_X^2 \right)$$

- Hard parton cross section $\hat{\sigma}_{ij \to X}$ calculable in perturbation theory
 - known to NLO, NNLO, \dots ($\mathcal{O}(\text{few}\%)$) theory uncertainty)
- Non-perturbative parameters: parton distribution functions f_i , strong coupling α_s , particle masses m_X
 - known from global fits to exp. data, lattice computations, ...

Higgs production in gg-fusion

Effective theory

- Integration of top-quark loop (finite result)
 - decay width $H \rightarrow gg$ ($m_q = 0$ for light quarks, m_t heavy)

$$\Gamma_{H \to gg} = \frac{G_{\mu} m_H^3}{64 \sqrt{2} \pi^3} \alpha_s^2 f\!\left(\frac{m_H^2}{4m_t^2}\right)$$

- Effective theory in limit $m_t \to \infty$; Lagrangian $\mathcal{L} = -\frac{1}{4} \frac{H}{v} C_H G^{\mu\nu a} G^a_{\mu\nu}$
 - operator $HG^{\mu\nu a} G^a_{\mu\nu}$ relates to stress-energy tensor
 - additional renormalization proportional to QCD β-function required Kluberg-Stern, Zuber '75; Collins, Duncan, Joglekar '77

QCD corrections to ggF

- Hadronic cross section $\sigma_{pp
 ightarrow H}$ with $au = m_H^2/S$
 - renormalization/factorization (hard) scale $\mu = \mathcal{O}(m_H)$

$$\sigma_{pp \to H} = \sum_{ij} \int_{\tau}^{1} \frac{dx_1}{x_1} \int_{x_1}^{1} \frac{dx_2}{x_2} f_i\left(\frac{x_1}{x_2}, \mu^2\right) f_j\left(x_2, \mu^2\right) \hat{\sigma}_{ij \to H}\left(\frac{\tau}{x_1}, \frac{\mu^2}{m_H^2}, \alpha_s(\mu^2)\right)$$

• Partonic cross section $\hat{\sigma}_{ij \rightarrow H}$

$$\hat{\sigma}_{ij \to H} = \alpha_s^2 \left[\hat{\sigma}_{ij \to H}^{(0)} + \alpha_s \, \hat{\sigma}_{ij \to H}^{(1)} + \alpha_s^2 \, \hat{\sigma}_{ij \to H}^{(2)} + \dots \right]$$

NLO: standard approximation (large uncertainties)

Perturbation theory at work

- Apparent convergence of perturbative expansion
 - NNLO corrections still large Harlander, Kilgore '02; Anastasiou, Melnikov '02; Ravindran, Smith, van Neerven '03
 - improvement through complete soft N³LO corrections S.M., Vogt '05 or NNLL resummtion Catani, de Florian, Grazzini, Nason '03, Ahrens et al. '10
- Perturbative stability under renormalization scale variation

Non-perturbative parameters

Input for collider phenomenology

- Non-perturbative parameters are universal
- Determination from comparision to experimental data
 - masses of heavy quarks m_c, m_b, m_t
 - parton distribution functions $f_i(x, \mu^2)$
 - strong coupling constant $\alpha_s(M_Z)$

Interplay with perturbation theory

- Accuracy of determination driven by precision of theory predictions
- Non-perturbative parameters sensitive to
 - radiative corrections at higher orders
 - renormalization and factorization scales μ_R , μ_F
 - chosen scheme (e.g., \overline{MS} scheme)

•

Top-quark pair-production

Exact result at NNLO in QCD

Czakon, Fiedler, Mitov '13

Illustration of mass dependence for Tevatron

- NNLO perturbative corrections (e.g. at LHC8)
 - K-factor (NLO \rightarrow NNLO) of $\mathcal{O}(10\%)$
 - scale stability at NNLO of $\mathcal{O}(\pm 5\%)$

Sven-Olaf Moch

Heavy-quark masses in Standard Model

- Higgs boson gives mass to matter fields via Higgs-Yukawa coupling
 - large top quark mass m_t

QCD

Classical part of QCD Lagrangian

$$\mathcal{L} = -\frac{1}{4} F^a_{\mu\nu} F^{\mu\nu}_b + \sum_{\text{flavors}} \bar{q}_i \left(i \not \!\!\!D - m_q \right)_{ij} q_j$$

- field strength tensor $F^a_{\mu\nu}$ and matter fields q_i, \bar{q}_j
- covariant derivative $D_{\mu,ij} = \partial_{\mu} \delta_{ij} + ig_s (t_a)_{ij} A^a_{\mu}$
- Formal parameters of the theory (no observables)
 - strong coupling $\alpha_s = g_s^2/(4\pi)$
 - quark masses m_q

Challenge

- Suitable observables for measurements of α_s, m_q, \ldots
 - comparison of theory predictions and experimental data

Heavy-quark mass renormalization

Pole mass

Based on (unphysical) concept of top-quark being a free parton

- heavy-quark self-energy $\Sigma(p, m_q)$ receives contributions from regions of all loop momenta also from momenta of $\mathcal{O}(\Lambda_{QCD})$
- Definition of pole mass ambiguous up to corrections $\mathcal{O}(\Lambda_{QCD})$
 - bound from lattice QCD: $\Delta m_q \ge 0.7 \cdot \Lambda_{QCD} \simeq 200 \text{ MeV}$ Bauer, Bali, Pineda '11

Running quark masses

- \overline{MS} mass definition $m(\mu_R)$ realizes running mass (scale dependence)
 - short distance mass probes at scale of hard scattering $m_{
 m pole} = m_{
 m short\ distance} + \delta m$
 - conversion between m_{pole} and \overline{MS} mass $m(\mu_R)$ perturbation theory

Total cross section with running mass

Comparison pole mass vs. \overline{MS} mass

- good apparent convergence of perturbative expansion
- small theoretical uncertainity form scale variation Sven-Olaf Moch

Top mass from total cross section

• Total top quark cross section as function of \overline{MS} mass Langenfeld, S.M., Uwer '09

Tevatron

- Determine top quark mass from Tevatron cross section data
 - $\sigma_{t\bar{t}} = 7.56^{+0.63}_{-0.56}$ pb D0 coll. arXiv:1105.5384
 - $\sigma_{t\bar{t}} = 7.50^{+0.48}_{-0.48}$ pb CDF coll. CDF-note-9913
- Fit of m_t for individual PDFs
 - parton luminosity at Tevatron driven by $q\bar{q}$
 - \overline{MS} -scheme for $m_t^{\overline{MS}}(m_t)$, then scheme transformation to pole mass m_t^{pole} at NNLO

	ABM11	JR09	MSTW08	NN21
$m_t^{\overline{\mathrm{MS}}}(m_t)$	$162.0^{+2.3}_{-2.3}{}^{+0.7}_{-0.6}$	$163.5 {}^{+2.2}_{-2.2} {}^{+0.6}_{-0.2}$	$163.2^{+2.2}_{-2.2}{}^{+0.7}_{-0.8}$	$164.4 {}^{+2.2}_{-2.2} {}^{+0.8}_{-0.2}$
$m_t^{ m pole}$	$171.7 {}^{+2.4}_{-2.4} {}^{+0.7}_{-0.6}$	$173.3^{+2.3}_{-2.3}{}^{+0.7}_{-0.2}$	$173.4 {}^{+2.3}_{-2.3} {}^{+0.8}_{-0.8}$	$174.9^{+2.3}_{-2.3}{}^{+0.8}_{-0.3}$
($m_t^{ m pole}$)	(169.9 $^{+2.4}_{-2.4}$ $^{+1.2}_{-1.6}$)	$(171.4^{+2.3}_{-2.3}{}^{+1.2}_{-1.1})$	$(171.3^{+2.3}_{-2.3}{}^{+1.4}_{-1.8})$	$(172.7 {}^{+2.3}_{-2.3} {}^{+1.4}_{-1.2})$

• Good consistency within errors for $m_t^{\text{pole}} = 171.7 \dots 174.9$ at NNLO

The fine print

Intrinsic limitation of sensitivity in total cross section

$$\left|\frac{\Delta\sigma_{t\bar{t}}}{\sigma_{t\bar{t}}}\right| \simeq 5 \times \left|\frac{\Delta m_t}{m_t}\right|$$

- Cross section at LHC has correlation of m_t , $\alpha_S(M_Z)$, gluon PDF $\sigma_{t\bar{t}} \sim \alpha_s^2 m_t^2 g(x) \otimes g(x)$
 - effective parton $\langle x \rangle \sim 2m_t/\sqrt{s} \sim 2.5 \dots 5 \cdot 10^{-2}$
 - fit with fixed values of m_t and $\alpha_S(M_Z)$ carries significant bias Czakon, Mangano, Mitov, Rojo '13

The fine print

- Fit with correlations
 - g(x) and $\alpha_s(M_Z)$ already well constrained by global fit (no changes)
 - for fit with $\chi^2/NDP = 5/5$ obtain value of $m_t(m_t) = 162$ GeV Alekhin, Blümlein, S.M. [in progress]

Top mass from leptonic decay

• Top mass from exclusive hadronic states

 $pp \rightarrow (t \rightarrow W^+ + b \rightarrow W^+ + J/\psi) + (\bar{t} \rightarrow W^- + \bar{b})$

• identification of μ -pair in J/ψ decay; leptonic or hadronic decay of WKharchilava '00 Chierici, Dierlamm '06

Top mass from leptonic decay

• Top mass from exclusive hadronic states

 $pp \rightarrow (t \rightarrow W^+ + b \rightarrow W^+ + J/\psi) + (\bar{t} \rightarrow W^- + \bar{b})$

- Study of m_{lb} distribution at NLO in QCD Biswas, Melnikov, Schulze '10
 - NLO QCD corrections to production and decay very important for value of m_t (effects of order $\Delta m_t = O(\text{few}) \text{ GeV}$
- Invariant mass distribution of lepton and b-jet (LHC14)
 - scale dependence at LO and NLO (left)
 - normalized m_{lb} distributions, $m_t = 171 \text{ GeV}$ and 179 GeV (right)

Top mass from jet rates

- LHC: large rates for production of $t\bar{t}$ -pairs with additional jets
- NLO QCD corrections for $t\bar{t} + 1$ jet Dittmaier, Uwer, Weinzierl '07-'08
 - scale dependence greatly reduced at NLO
 - corrections for total rate at scale $\mu_r = \mu_f = m_t$ are almost zero

Mass measurement with $t\bar{t} + jet$ -samples

Mass measurement with new observable

Alioli, Fernandez, Fuster, Irles, S.M., Uwer, Vos '13

- variable $\rho_s = \frac{2 \cdot m_0}{\sqrt{s_{t\bar{t}}+1_{jet}}}$ with invariant mass of $t\bar{t} + 1$ jet system and fixed scale $m_0 = 170 \,\text{GeV}$
- Normalized-differential $t\bar{t} + jet$ cross section

$$\mathcal{R}(m_t, \rho_s) = \frac{1}{\sigma_{t\bar{t}+1jet}} \frac{d\sigma_{t\bar{t}+1jet}}{d\rho_s} (m_t, \rho_s)$$

• significant mass dependence for $0.4 \le \rho_s \le 0.5$ and $0.7 \le \rho_s$

- Differential cross section $\mathcal{R}(m_t, \rho_s)$
 - good pertubative stability, small theory uncertainties, small dependence on experimental uncertainties, ...
- Sensitivity to top-quark mass very good

$$\left|\frac{\Delta \mathcal{R}}{\mathcal{R}}\right| \simeq (m_t \mathcal{S}) \times \left|\frac{\Delta m_t}{m_t}\right|$$

• increased sensitivity for system $t\bar{t} + jet$ compared to $t\bar{t}$

Upshot

- Precision determination of well-defined top-quark mass m_t possible
 - alternative to inclusive cross sections

Sven-Olaf Moch

Higgs potential

Renormalization group equation

- Quantum corrections to Higgs potential $V(\Phi) = \lambda \left| \Phi^{\dagger} \Phi \frac{v}{2} \right|^2$
- Radiative corrections to Higgs self-coupling λ
 - electro-weak couplings g and g' of SU(2) and U(1)
 - top-Yukawa coupling y_t

$$16\pi^2 \frac{d\lambda}{dQ} = 24\lambda^2 - \left(3g'^2 + 9g^2 - 12y_t^2\right)\lambda + \frac{3}{8}g'^4 + \frac{3}{4}g'^2g^2 + \frac{9}{8}g^4 - 6y_t^4 + \dots$$

Higgs potential

Triviality

- Large mass implies large λ
 - renormalization group equation dominated by first term

$$16\pi^2 \frac{d\lambda}{dQ} \simeq 24\lambda^2 \longrightarrow \lambda(Q) = \frac{m_H^2}{2v^2 - \frac{3}{2\pi^2}m_H^2 \ln(Q/v)}$$

- $\lambda(Q)$ increases with Q
- Landau pole implies cut-off Λ
 - scale of new physics smaller than Λ to restore stability
 - upper bound on m_H for fixed Λ

$$\Lambda \le v \exp\left(\frac{4\pi^2 v^2}{3m_H^2}\right)$$

- Triviality for $\Lambda \to \infty$
 - vanishing self-coupling $\lambda \rightarrow 0$ (no interaction)

Higgs potential

Vacuum stability

- Small mass
 - renormalization group equation dominated by y_t

$$16\pi^2 \frac{d\lambda}{dQ} \simeq -6y_t^4 \longrightarrow \lambda(Q) = \lambda_0 - \frac{\frac{3}{8\pi^2} y_0^4 \ln(Q/Q_0)}{1 - \frac{9}{16\pi^2} y_0^2 \ln(Q/Q_0)}$$

- $\lambda(Q)$ decreases with Q
- Higgs potential unbounded from below for $\lambda < 0$
- $\lambda = 0$ for $\lambda_0 \simeq \frac{3}{8\pi^2} y_0^4 \ln(Q/Q_0)$
- Vacuum stability

$$\Lambda \le v \exp\left(\frac{4\pi^2 m_H^2}{3y_t^4 v^2}\right)$$

- scale of new physics smaller than Λ to ensure vacuum stability
- lower bound on m_H for fixed Λ

Implications on electroweak vacuum

- Relation between Higgs mass m_H and top quark mass m_t
 - condition of absolute stability of electroweak vacuum $\lambda(\mu) \ge 0$
 - extrapolation of Standard Model up to Planck scale M_P
 - $\lambda(M_P) \ge 0$ implies lower bound on Higgs mass m_H

$$m_H \ge 129.2 + 1.8 \times \left(\frac{m_t^{\text{pole}} - 173.2 \text{ GeV}}{0.9 \text{ GeV}}\right) - 0.5 \times \left(\frac{\alpha_s(M_Z) - 0.1184}{0.0007}\right) \pm 1.0 \text{ GeV}$$

- recent NNLO analyses Bezrukov, Kalmykov, Kniehl, Shaposhnikov '12;
 Degrassi, Di Vita, Elias-Miro, Espinosa, Giudice et al. '12
- uncertainity in results due to α_s and m_t (pole mass scheme)
- Top quark mass from Tevatron in well-defined scheme
 - $m_t^{\overline{\text{MS}}}(m_t) = 163.3 \pm 2.7 \text{ GeV}$ implies in pole mass scheme $m_t^{\text{pole}} = 173.3 \pm 2.8 \text{ GeV}$
 - good consistency of mass value between different PDF sets

Fate of the universe

Degrassi, Di Vita, Elias-Miro, Espinosa, Giudice et al. '12, Alekhin, Djouadi, S.M. '12, Masina '12

- Uncertainty in Higgs bound due to m_t from in \overline{MS} scheme
 - bound relaxes $m_H \ge 129.4 \pm 5.6 \text{ GeV}$
 - "fate of universe" still undecided

Summary

Physics at the Terascale

- Discovery of (SM like) Higgs boson opens new avenue for studies of Standard Model physics and beyond
- Precision determinations of non-perturbative parameters is essential
 - masses m_t , M_W , m_H , ...
 - coupling constants $\alpha_s(M_Z)$
 - parton content of proton (PDFs)
- Precision measurements require careful definition of observable
 - top-quark mass m_t in well defined scheme
- Radiative corrections at higher orders in QCD and EW are mandatory
 - continuous benchmarking mandatory
 - theory improvements driven by experimental precision
- Lots of challenging tasks for young researchers