

Investigation of Beam Halo at ATF2

Shan Liu, Philip Bambade, Sha Bai, Dou Wang, Illia Khvastunov

ECFA, Hamburg, 29 May, 2013

Contents

- Introduction
- General Study of Beam Halo
- Beam Halo Measurement and Collimation
- Diamond Detector R&D
- Diamond Detector Test @ PHIL
- Summary and Future Plan

Introduction

Motivations:

 \succ Beam halo transverse distribution unknown \rightarrow investigate halo model

General Study of Beam Halo

Measurement & Collimation Measurement & Collimation Beam Halo

Beam Halo Measurement

- First beam halo measurements were done in 2005 using the wire scanners in the extraction line -> need to be updated for present beam optics;
- No energy halo measurement was performed before -> Energy spread of halo is unknown -> can be investigated with wire scanners by measuring halo distribution by changing the vertical dispersion in the diagnostic section.

Wire Scanners & Detectors

MW1X-Post IP Wire Scanner

Beam Distribution After Normalization

Mad-X Simulation Results for Beam & Halo & Compton Signal @ Sensor

28340

3*10~52 *10

 $(\delta p/p_0 = 0.0008)$

Compton

2834

10

82.2fC~1.4284pC

Halo Collimation

Diamond Detector R&D

ulamong belector K&b

Diamond Detector Characteristics

Property [Diar	mond	Si	licon
Density (g m ⁻³)		3.5		2.32
Band gap (eV)		5.5		1.1
Resistivity (Ω cm)		>1012		10 ⁵
Breakdown voltage (V cm ⁻¹)		107		10 ³
Electron mobility (cm ³ V ⁻¹ s ⁻¹)		1800		1500
Hole mobility (cm ³ V ⁻¹ s ⁻¹)		1200		500
Saturation elocity (µm ns ⁻¹)		220		100
Dielectric constant		5.6		11.7
Neutron				
transmutation cross-section(mb)		3.2		80
Energy per e-h pair (eV)		13		3.6
Atomic number		6		14
Av.min.ionizing signal per 100 µm (e	e)	3600		8000

Energy loss of an electron in **diamond** & silicon

ADVANTAGES

- Large band-gap⇒low leakage current
- High breakdown field
- High mobility ⇒ fast charge collection
- Large thermal conductivity
- High binding energy ⇒ Radiation hardness
 Fast pulse ⇒ < 1 ns

	Kinetic Energy MeV	Collision Stp. Pow. MeV cm2/g	MeV/cm	Radiative Stp. Pow. MeV cm2/g	MeV/cm	Total Stp. Pow. MeV cm2/g	MeV/cm
PHIL →	3.00E+000	1.59E+000	5.60E+000	3.56E-002	1.25E-001	1.63E+000	5.73E+000
ATF2 →	1.30E+003	2.09E+000	7.36E+000	2.96E+001	1.04E+002	3.17E+001	1.11E+002

Diamond Detector Characteristics

Detector Holder Design

Diamond Detector Test @ PHIL

Diamona Detector lest @ PHIL

Diamond Detector Test @ PHIL

First Test @ PHIL

Performed on 08.02.2013

First Test Results @ PHIL

Second Test @ PHIL

Beam Energy : 3 MeV; Beam Size: $\sigma \approx 4.5$ cm Beam Charge: 33 pC (measured at ICT 1, obtained using a 10% filter on the laser)

<u>Summary</u>

- We can investigate halo propagating model by measuring the beam halo using diamond sensor;
- We probably need to cut the beam halo signal to probe the Compton spectrum. Betatron collimation may be needed for both horizontal and vertical planes as well as energy collimation for horizontal plane (collaboration with IFIC);
- First tests of diamond sensor @ PHIL;
- First measurements of halo at ATF2.

Future Plans

- Continue data analysis for the ATF2 halo measurement using wire scanners;
- Energy halo measurement using wire scanners at ATF2 in *June* (by S. Bai);
- Investigation of halo generation theory (by D. Wang and T. Demma);
- BDSIM-GEANT4 simulation for beam halo regeneration study (by I. Khvatunov)
- Calibrate the readout of diamond sensor using Sr source in June;
- Finish the design of in vacuum detector and detector holder, install and test in air @ PHIL before *December*;

→ Install the diamond sensor @ ATF2 in 2014

Thank you for your attention !

i nank you ior your attention !

Backup Slides

backup sildes

Beam Distribution Before Normalization

Change the beta_y*

Vertical Collimation at QD10

Ratio of halo (40sigma) loss on Y axis with deltap_0.0008

Horizontal Collimation at QF1X

Horizontal Collimation at QF6X

