

ECFA LC2013 European Linear Collider Workshop 27 – 31 May 2013 DESY, Hamburg

Recent Results On Top Physics In Atlas

G. Barone^{*} On behalf of the Atlas Collaboration *DPNC, University Of Geneva

LC2013

Outline Introduction

- $t \bar{t}$ cross section production
- Single top production
- Top Properties
- Beyond the S.M. searches
- Conclusion

LHC: top factory machine

- Top Production at LHC:
 - $t \bar{t}$ pairs
 - Single top
- Leading Order diagrams
 - $q \overline{q} \rightarrow t \overline{t} (15\% \text{ at } \sqrt{s} = 7 \text{ TeV})$
 - $gg \rightarrow t \bar{t}$ (85% at $\sqrt{s} = 7 \text{ TeV}$)

- Top production per experiment
 - 5 fb⁻¹ \sqrt{s} = 7 TeV and 20 fb⁻¹ \sqrt{s} =8 TeV
 - 5.6× $10^6 t t$ events for
 - 2.7×10^6 Single top events

proton - (anti)proton cross sections

t t production cross section

$tt \rightarrow l+jets$ 5.8 fb⁻¹ at $\sqrt{s} = 8$ TeV ATLAS-CONF-2012-149

$tt \rightarrow l+jets \prod 5.8 \text{ fb}^{-1} \text{ at } \sqrt{s} = 8 \text{ TeV ATLAS-CONF-2012-149}$

LC2013

- Simultaneous over e, μ fit:
 - per channel fit of W+j

Channel	N _{tt}	$\sigma_{t\bar{t}} (\mathrm{pb})$
$e+\geq 3$ jets	31050 ± 350	239±3
$\mu + \geq 3$ jets	45000 ± 400	242 ± 2
$l+\geq 3$ jets	76000 ± 500	241±2

Good Agreement with theoretical prediction:

$$\sigma_{t\bar{t}} = 241 \pm 2 \text{ (stat)} \pm 31 \text{ (syst)} \pm 9 \text{ (lumi) pb}$$

 Dominant Systematics: MC modeling of the signal (11%) and Jet/E^{miss} reconstruction/calibration (~6%)

$$\sigma_{t\bar{t}}^{theor} = 238^{+22}_{-25} \text{ pb}$$

- top mass @172.5 GeV
- * approximate NNLO QCD HATHOR

Most recent calculation: M. Czakon et Al (CERN-PH-TH/ $\sigma_{t\bar{t}}^{theor} = 245.8^{+6.2}_{-8.4} \text{ pb}$

NNLO QCD corrections

t t Jet Multiplicity 4.7 fb⁻¹ $\sqrt{s} = 7$ TeV ATLAS-CONF-2012-155

$\sigma_{t\bar{t}}$ Summary ATLAS-CONF-2012-024

- full correlation of shared uncertainties
- Single lepton channel at 8 TeV $\sigma_{t\bar{t}}$ (8 TeV) = 241 ± 32 pb
- Good Agreement with NNLO S.M. calculation for both C.M. energies

Combination at 7 TeV:

$$\sigma_{t\bar{t}}$$
 (7 TeV) = 177⁺¹¹₋₁₀ pb

- Combined likelihood parametrization
 - profile likelihood ratio estimator
- 6 measurements combination

 $\sigma_{t\bar{t}}$ [pb]

Single Top

Single Top cross section

- Production via electroweak, charged-current interactions. $u(\overline{d})$
 - at $\sqrt{s} = 8 \text{ TeV } \sigma_t \simeq 1/2 \sigma_{tt}$
 - Dominant t-channel via virtual W boson
- Motivations:
 - sensitivity to new physics
 - constrain $|V_{tb}|$, no assumption on number of quark generations
 - b-quark PDF measurement
- Previous ATLAS measurements:
 - t channel at $\sqrt{s} = 7 \text{ TeV } \sigma_t = 83 \pm 20 \text{ pb Observation of 7.2 } \sigma$ (Phys. Lett. B 717 (2012) 330-350)
 - N.N. (analysis similar to 8 TeV)
 - Systematics: b-tagging eff, jet modeling, ISR/FSR
 - ♦ $|V_{tb}| > 0.75$ at 95% C.L.
 - t channel $\sigma_t / \sigma_{tt} = 1.81^{+0.23} + 0.22$ at $\sqrt{s} = 7 \text{ TeV}$ (ATLAS-CONF-2012-056)
 - W_t production at $\sqrt{s} = 7 \text{ TeV } \sigma_{Wt} = 16.8 \pm 2.9 \text{ (stat)} \pm 4.9 \text{ (syst)} \text{ pb}$ (Phys. Lett. B 716 (2012) 142-159)
 - + 3.3 σ Evidence
 - s-channel production $\sigma_t < 26.5 \text{ pb}$ (95% Upper Limit) (ATLAS-CONF-2011-118)

Single Top cross section 5.8 fb⁻¹, at $\sqrt{s} = 8$ TeV, ATLAS-CONF-2012-132

LC2013

- Selection:
 - semi-leptonic channel
- W+jets main background
 - ▶ W+H.F.-jets same signature
 - W+light-jets due to misidentification on b-jets
- N.N. discrimination
 - kinematic variables

I variables: mjb m2/jets SR
 Cross section
 extraction
 β scale factors

+ N(events) = β^{2000} × expectation

combined fit in 2 and 3 jet bins

Single Top cross section 5.8 fb⁻¹ at $\sqrt{s} = 8$ TeV ATLAS-CONF-2012-132

• cross section

CM energy [TeV]

LC20|3

Properties of the top quark

Top Mass 1 4.7 fb⁻¹, $\sqrt{s} = 7$ TeV, ATLAS-CONF-2013-046

- kinematic reconstruction with a likelihood fit using KLFitter
 - Reconstruction to parton mapping response: transfer functions
 - Γ_{top} and Γ_{W} Breit Wigner constraints for m_{top} ^{reco} and m_{W} ^{reco}
 - b-tag information included for correct jet permutation assignment

G. Barone

Top Mass: III 4.7 fb⁻¹, $\sqrt{s} = 7$ TeV, ATLAS-CONF-2013-046

LC2013

• Uncertainties:

- b-tagging, residual JES dependence
- statistical component of bJSF determination.
- Improvements w.r.t to I fb⁻¹ 2d :
 - The total systematic uncertainty is reduced by 40%
 - Better modeling of underlying partonic quantities

Result:

G. Barone

 $m_{\rm top} = 172.31 \pm 0.75({\rm stat+JSF+bJSF}) \pm 1.35({\rm syst}) \,\,{\rm GeV}$

 Nuisances:

 jet energy scale factor: JSF = 1.014 ± 0.003(stat) ± 0.021(syst)

 b-jet-to-light jet fraction: bJSF = 1.006 ± 0.008(stat) ± 0.020(syst)

Top Polarization $I_{4.7 \text{ fb}^{-1}} \sqrt{s} = 7 \text{ TeV ATLAS-CONF-2012-133}$

- Motivations:
 - the top (anti-top) produced almost unpolarized in $t \bar{t}$ production
 - In BSM models polarized top quarks can be produced
- Method and Extraction
 - lepton polar angle (top rest frame) θ_i :

$$f = \frac{1}{2} + \frac{N(\cos(\theta_i) > 0) - N(\cos(\theta_i) < 0)}{N(\cos(\theta_i) > 0) + N(\cos(\theta_i) < 0)}$$

Top Polarization II 4.7 fb⁻¹, $\sqrt{s} = 7$, TeV ATLAS-CONF-2012-133

LC2013

- Template fit :
 - extraction of degree of polarization:

 $\alpha p = 2f - 1$

- templates:
 - fully positive and negative polarization
- Systematic Uncertainties:
 - Resolution and Calibration scales
 - Leading Jet reconstruction

Source	Δf	
Lepton reconstruction	+0.002	-0.003
Jet reconstruction	+0.018	-0.028
$E_{\rm T}^{\rm miss}$ reconstruction	+0.001	-0.003
Signal modelling	+0.011	-0.012
W+jets shape	+0.004	-0.004
Fake lepton shape	+0.004	-0.005
Monte Carlo background cross section	+0.002	-0.002
Template statistical uncertainty	+0.004	-0.004
Total systematic	+0.023	-0.032

$$f = 0.470 \pm 0.009(\text{stat}) \stackrel{+0.023}{_{-0.032}}(\text{syst})$$
$$\alpha p = -0.060 \pm 0.018(\text{stat}) \stackrel{+0.046}{_{-0.064}}(\text{syst})$$

• Consistent with S.M. prediction of f = 0.5

$t t Spin Correlation 1 2.1 fb^{-1} \sqrt{s} = 7 TeV PRL 108, 212001 (2012)$

- τ_{top} < O(I) of α_s time scale, decay before hadronization:
 - spin at production transferred to decay products.
 - t and t spins for t t production correlated under the S.M.
 - The tt decay in W⁺W⁻b⁻b⁺→ I⁺v I⁻v b⁻b⁺ channel produces charged leptons
 - correlations in azimuthal angle, $\Delta \phi$, in the laboratory frame

- Analysis extracts degree of correlation :
 - Fractional difference in number of aligned and anti aligned events top quarks

$$A \equiv \frac{N(\uparrow\uparrow) + N(\downarrow\downarrow) - N(\uparrow\downarrow) - N(\downarrow\uparrow)}{N(\uparrow\uparrow) + N(\downarrow\downarrow) + N(\uparrow\downarrow) + N(\downarrow\uparrow)}$$

$t t Spin Correlation II 2.1 fb^{-1} \sqrt{s} = 7 TeV PRL 108, 212001 (2012)$

• Template fit on $\Delta \phi$ distributions

 $A_{\text{measured}} = A^{\text{SM}} \cdot f^{\text{SM}}$

- linear superposition of template modeling the correlated (fSM) and uncorrected (I - fSM) hypotheses
- Result projected in helicity basis:
 - helicity base (quark direction of flight in the C.M.)

 $\left(A_{\text{helicity}} = 0.40 \pm 0.04(\text{stat}) \right)^{+0.08}_{-0.07}(\text{syst})$

Consistent with S.M. prediction

 $A_{\rm helicity}^{\rm theor} = 0.31$

- First Observation
 - \blacktriangleright No correlation hypothesis excluded at 5.1 σ

Uncertainty source	$\Delta f^{ m SM}$
Data statistics	± 0.14
MC simulation template statistics	± 0.09
Luminosity	± 0.01
Lepton	± 0.01
Jet energy scale, resolution and efficiency	± 0.12
NLO generator	± 0.08
Parton shower and fragmentation	± 0.08
ISR/FSR	± 0.07
PDF uncertainty	± 0.07
Top quark mass	± 0.01
Fake leptons	+0.16/-0.07
Calorimeter readout	± 0.01
All systematics	+0.27/-0.22
Statistical + Systematic	+0.30/-0.26

W_{tb} vertex probes

• Top physics:

- direct probe of couplings in the W_{tb} vertex
- Most general S.M. Lagrangian at tree level:

$$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}}\overline{b}\gamma^{\mu} \left(V_{\rm L}P_{\rm L} + V_{\rm R}P_{\rm R}\right) tW_{\mu}^{-} - \frac{g}{\sqrt{2}}\overline{b}\frac{i\sigma^{\mu\nu}q_{\nu}}{m_{W}} \left(g_{\rm L}P_{\rm L} + g_{\rm R}P_{\rm R}\right) tW_{\mu}^{-} + \text{h.c.}$$

- V_L ~V_{tb}~Ⅰ
- while the anomalous couplings $V_R = g_{R,L} = 0$
- Deviations from:
 - W polarization fractions
 - Lepton Angular asymmetries from the W decay

Whelicity $I_{1.04 \text{ fb}^{-1} \sqrt{s}} = 7 \text{ TeV JHEP 1206 (2012) 088}$

- W polarization can be longitudinal, left or right-handed
- Angular distribution:

$$\frac{1}{\sigma} \frac{d\sigma}{d\,\cos\,\theta^*} = \frac{3}{4} (1 - \cos^2\,\theta^*) F_0 + \frac{3}{8} (1 - \cos\,\theta^*)^2 F_{\rm L} + \frac{3}{8} (1 + \cos\,\theta^*)^2 F_{\rm R} \quad \overset{\mathbf{b}}{\underset{F_L \approx 0.3}{\overset{\mathbf{b}}{\mathsf{F}_0 \approx 0.7}}}$$

• Method I: W helicity states templates from $\cos\theta^*$

LC2013

 $F_R \approx 0$

W⁺

b

f+

Whelicity $1 \, \frac{0.5}{1.04} \, \frac{1}{\text{fb}^{-100}} = 7 \, \text{TeV JHEP 1206 (2012) 088}$ $\cos \theta^*$

LC2013

 $\cos \theta^*$

 $\cos \theta^*$

We helicity III 1.04 fb⁻¹ $\sqrt{s} = 7$ TeV JHEP 1206 (2012) 088

● Combination

```
95% CL
```

Meluding €00##dated effects

allowed regions

• Agreement with S.M. prediction

Channel	F_0	F_{L}	$F_{ m R}$
W boson helicity frac	tions from the templ	ate fit	
Single leptons	$0.57 \pm 0.06 \pm 0.09$	$0.37 \pm 0.03 \pm 0.04$	$0.07 \pm 0.03 \pm 0.06$
$\mathrm{Dileptons}0$	$0.92 \pm 0.10 \pm 0.10$	$0.17 \pm 0.06 \pm 0.07$	$-0.09 \pm 0.05 \pm 0.06$
Combination	$0.66 \pm 0.06 \pm 0.07$	$0.33 \pm 0.03 \pm 0.03$	$0.01 \pm 0.03 \pm 0.06$
$F_{\rm R}$ fixe 0.2	$0.66 \pm 0.03 \pm 0.04$	$0.34 \pm 0.03 \pm 0.04$	0 (fixed)
W boson helicittope	n ons from the angul	ar asymmetries	V ₁ =1, V ₂ =0
Single-Opfons	$0.66 \pm 0.03 \pm 0.08$	$0.33 \pm 0.02 \pm 0.05$	$0.01 \pm 0.01 \pm 0.04$
Dileptons -0	.4 .74 ± 0.0 0±2 0.10	$0.270 \pm 0.03 \pm 0.052$	$-0.01 \pm 0.43 \pm 0.05$
Combination	$0.67 \pm 0.04 \pm 0.07$	$0.32 \pm 0.02 \pm 0.04$	$0.01 \pm 0.02 \pm 0.04$
Overall combination	$0.67 \pm 0.03 \pm 0.06$	$0.32 \pm 0.02 \pm 0.03$	$0.01 \pm 0.01 \pm 0.04$

W boson helicity fractions

Single Top CP Violation 4.66 fb⁻¹, $\sqrt{s} = 7$ TeV, ATLAS-CONF-2013-032

LC20|3

- Limits on the W_{tb} vertex in t t events
 - Not sensitive to all anomalous couplings, especially if CP-violating component
 - Non-SM contributions have sizable CP-violating components
- Asymmetry:
 - Forward/Backwards asymmetry:

 $A_{\rm FB}^{\rm N} = \frac{3}{4} P(F_{\rm R}^{N} - F_{\rm L}^{N})$

- ★ cos $θ^N$ w.r.t to the plane of p(W) and top polarization
- Full Reconstruction of top and W needed
- ► A_{FB} relates to I(g_R)

$$A_{\rm FB}^{\rm N} = 0.64 \ P \ \mathbb{I}(g_{\rm R})$$

26

May-13

$t t + HF I_{4.7 \text{ fb}^{-1}\sqrt{s}} = 7 \text{ TeV sub. PRD. CERN-PH-EP-2013-030}$

- Search for t t associated vith heavy-flavor (H_{5}) (H_{5})
 - ► tt + b + X, tt + c + X $v = 10^{6}$ $v = 10^{6}$ 10^{6} 10^{6} 10^{6} 10^{5} s = 7 TeV 10^{3}
 - production via gluon splitting from ISR/FSR
 - HF of proton can lead to t t with at least one b (c) quark
- Motivations:
 - Main irreducible background to $H \rightarrow t \ t \ and \ H \rightarrow b \ b \ Vertex \ mass [GeV]$

10⁻¹

- Constrain models of HF production at the scale of the top quark mass
 ³/₂ 10⁷ ATLAS
- Composite Higgs Models
- Strategy:
 - Search in dilepton channel with at least three b-tagged jets
 - two jets originate from W decay
 - main background light flavor jets
 - Extract ratio of fiducial cross sections R= $\sigma(t t+HF) / \sigma(t t+j)$
 - $\sigma(t t+j)$: at least 3 (2) jets (b-tagged jets)

<i>b</i> -purity	<i>b</i> -jet efficiency	<i>c</i> -jet efficiency	light-flavor rejection
Tight	60%	17%	230
Medium	10%	7%	100
Low	5%	6%	75

- Classify three purity bins
 - tagger operating point
 - mutually exclusive

27

Jets / 1.00 GeV

Jets / 1.00 GeV

Jets / 1.00 GeV

2

b-iets

c-jets

0

 $L dt = 4.7 \text{ fb}^{-1}$

s = 7 TeV

 10^{2}

10

ts / 1.00

10⁶

 10^{5}

 10^{4}

10⁻¹

light jets

$t + HF \parallel_{4.7 \text{ fb}^{-1}\sqrt{s}} = 7 \text{ TeV sub. PRD. CERN-PH-EP-2013-030}$

LC2013

- Template fit over jet vertex mass
 - determine $\sigma(t t + HF)$
 - discrimination of light/heavy flavor portion
 - D templates:
 - ✦ jet vertex mass and jet p⊤
 - Combined fit on purity bins
- Results
 - Dominant Systematic: flavor composition

Tagged jet vertex mass category

$$R_{\rm HF} = \left[7.1 \ \pm 1.3(\text{stat}) \ ^{+5.3}_{-2.0}(\text{syst})\right]\%$$

- LO (ALPGEN+HERWIG) 3.4 ± 1.1%, 1.4
 σ agreement
- t t NLO plus LO jets 5.2 ± 1.7 % 0.6 σ agreement

28

Jets / bin

B.S.M. physics

Heavy top-like in I+j

- Addition to Standard Model of doublets (triplets) of vector-like quarks
 - both chiralities transform $SU(2) \times U(1)$
 - extensions of S.M.: Little Higgs, extra dimensional models
 - solve Higgs mass top correction hierarchy
- LHC expected production:
 - pairs for O(m < I TeV): clean signature high cross sections
 - for O(m > I TeV): singlet E.W. production can dominate
- Preference coupling with 3^{thd}gen quarks
 - mixing dependent of S.M. quarks
 - $t' \rightarrow Wb, t' \rightarrow Zt, t' \rightarrow Ht$
- W' searches in association with top production

$t' \rightarrow Ht I_{14.3 \text{ fb-} 1\sqrt{s} = 8 \text{ TeV ATLAS-CONF-2013-018}}$

$t' \rightarrow Ht \parallel_{14.3 \text{ fb-} 1/\text{s}} = 8 \text{ TeV} \text{ ATLAS-CONF-2013-018}$

LC2013

ATLAS Preliminary

- No observation, 95% C.L. exclusions for the weak isospins:
 - doublet: an observed (expected) m_t' > 790 (745) GeV
 - most stringent limit to date
 - singlet: the observed (expected) m_t['] >640 (615) GeV

- Derive limits on vector-like t' quark production:
- Ŧ $\sqrt{s} = 8 \text{ TeV},$ L dt = 14.3 fb⁻¹ 0.6 95% CL expected exclusion 0.4 BR(ť 95% CL observed exclusion 0.2 0.2 ★ SU(2) doublet SU(2) singlet 0.8 0.4 0.6 0.2 0.4 0.6 m_{t'} = 450 GeV $m_{t'} = 500 \text{ GeV}$ $m_{t'} = 550 \text{ GeV}$ 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0.8 0.6 0.8 m, = 600 GeV m_t, = 650 GeV m_t, = 700 GeV 0.8 0.6 0.6 0.4 04 0.2 0.2 0.2 0.8 $m_{t'} = 750 \text{ GeV}$ $m_{t'} = 800 \text{ GeV}$ m_{t'} = 850 GeV 0.8 0.6 0.6 0.6 0.4 0.4 0.2 0.2 0.2 0.6 0.8 0.2 0.6 0.8 0.2 0.6 0.8 0.2 0.4 0.4 $BR(t' \rightarrow Wb)$

 $m_{t'} = 400 \text{ GeV}$

m_t, = 350 GeV

- different values of $m_{t'}$ as f unction of $BR(t' \rightarrow Wb)$ and $BR(t' \rightarrow Ht)$.
- $\mathsf{BR}(t' \to Zt) = \mathsf{I} \mathsf{BR}(t' \to \mathsf{Wb}) \mathsf{BR}(t' \to \mathsf{Ht})$

b^* -quark production 4.7 fb-1 \sqrt{s} = 7 TeV Phys. Lett. B 721 (2013) 171-189 LC2013

- b*→Wt first search for excited quarks coupling to 3^{thd} gen. fermions
 - Randall–Sundrum models (strong interaction)
 - with a heavy gluon partner (ex. composite Higgs models)
- Dilepton channel:
 - two opposite charge lepton, one jet, no b-tag
 - ► H_T discriminant
- semi-leptonic:
 - one lepton N(b-tag) \geq I
 - reconstructed mass
- Ieft-handed models
 - unit strength chromo- magnetic coupling
 - ▶ m_{b*} < 870 GeV excluded at 95% C.L.</p>
- right handed models:

G. Barone

- vector-like b^{*} couplings
- $k_L^b = g_L = 0, k_R^b = g_R = 1 m_{b^*} < 920 \text{ GeV}$ excluded at 95%

 $k_L^b = g_L = k_R^b = g_R = 1, m_{b^*} < 920 \text{ GeV}$ excluded at 95%

LC2013

$W' \rightarrow t \overline{b}$ 14.3 fb-1 \sqrt{s} = 8 TeV ATLAS-CONF-2013-050

- W' top searches
 - heavily coupling with 3^{thd} gen. quarks
 - t b reconstruction allows for peak hunting in invariant mass spectrum
 - assumed same coupling strength as for W
- Analysis based on BDT
 - training with kinematic variables
 - separately for 2-jet and 3-jet events
 - signal $m_{W'}$ = 1.75 TeV for best exclusion limit
- Systematics:

G. Barone

- b-tag performance, Jet Energy Scale
- monte carlo generator, ISR/FSR
- No deviation observed, 95% C.L. on $m_{W'}$
 - Left Handed model: I.74 TeV
 - Right handed model: I.56 TeV

14.3 fb⁻¹ \sqrt{s} = 8 TeV ATLAS-CONF-2013-052 t t resonances 4.7 fb⁻¹ \sqrt{s} = 7 TeV Sub Phy. Rev. D CERN-PH-EP-2013-032

LC2013

- Resonances predicted by topcolor assisted technicolor Phys. Lett. B345 (1995) 483–489
 - Ieptophobic Z'
 - Randall–Sundrum warped extra-dimension
 - bulk Kaluza–Klein (color-octet)
- Search for excesses in m_{tt}^{-reco}
 - boosted: high-mass tt
 - collimated decay products,
 - no ambiguity
 - single jet reconstruction with R=1.0
 - ► resolved hadronic to rel Exp. 95% CL upper limit
 - + small $\widehat{\mathbf{F}}_{\text{radius jets}}^{10^{\circ}}$ (R4-30.4)
 - χ^2 for best jet assignment to leptonic and hadronic top

Exp. 1 σ uncertainty

- Dominant systematic: t t cross section
- No deviation, 95% C.L. exclusions derived
 - Narrow $Z' \xrightarrow{10^1} t t$: 0.5 TeV for $\sigma_{Z'} = 5.3$ to 3 TeV for $\sigma_{Z'} = 0.08$ pb
 - ▶ broad color octet $g_{kk}^{1} \rightarrow t t$: ^{1,5} TeV for $\sigma_{kk}^{2.5} = 9.6$ to 2.5 TeV for $\sigma_{kk} = 0.152$ pb

Conclusions

• Status:

- Concluded many measurements with 7 TeV and 8 TeV data
- 20 fb⁻¹ awaiting to be further analyzed
- $\sigma_{t\bar{t}} (7 \text{ TeV}) = 177^{+11}_{-10} \text{ pb} \qquad A_{\text{helicity}} = 0.40 \pm 0.04(\text{stat}) \stackrel{+0.08}{_{-0.07}}(\text{syst})$ $\sigma_{t\bar{t}} (8 \text{ TeV}) = 241 \pm 32 \text{ pb} \qquad A_{\text{FB}}^{\text{N}} = 0.032 \pm 0.065(\text{stat}) \stackrel{+0.029}{_{-0.031}}(\text{syst})$ $\sigma_{t} = 95 \pm 2(\text{stat}) \pm 18(\text{syst}) \text{ pb} \qquad R_{\text{HF}} = \left[7.1 \pm 1.3(\text{stat}) \stackrel{+5.3}{_{-2.0}}(\text{syst})\right]\%$
- top physics:
 - Constraints to Standard Model trough its properties
 - Aperture in search for new physics phenomena
- Good agreement with standard model
 - No new physics observed, stringent limits
- The full set of top results:
 - https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults

Additional Material

Top Decay Modes

Motivations for Top Physics

- Probe Standard Model
 - top mass measurement
 - top EM couplings: $t t\gamma$, t tZ
 - Single Top production
- Precise tests of perturbative QCD
- Important background for many searches
 - New physics: SUSY, ..
 - Higgs searches in: t tH, ...
- Searches for new physics:
 - vector like heavy new quarks

Top Decay Modes

- All hadronic:
 - high background
- Lepton plus jets
 - best compromise
 - ✦ statistics
 - signal/background
- Dilepltonic
 - Iow rate

Object Definition

- Electrons:
 - EM cluster with track matched
 - \blacktriangleright Isolation in tracker and calorimeter E_T > 25 GeV, $|\eta|$ <1.37 or 1.52< $|\eta|$ <2.47
- Muons:
 - Tracks in both Inner detector and muon spectrometer
 - Track and calorimeter Isolation $p_T > 20 \text{ GeV} |\eta| < 2.5$
- Jets:
 - Reconstructed from topological clusters using the anti-k_T algorithm (R = 0.4)
 - + p_T > 25 GeV, |η| <2.5
 - η and p_T dependent correction
 - factors derived from simulation and validated with data
- Missing transverse energy:
 - Vector sum of energy deposits in calorimeter
 - Corrected for identified objects
- b-tagging:
 - Neural network based b-tagging (MVI algorithm)
 - b-tagging efficiency of ~70%
 - + light jet rejection factor \sim 140

Event Selection

LC2013

Leptons: ×10³ ×10³ electron (much TLAge en Pretiminantshold > 20 (18) GeV Ldt = 5.8 fb Events / 10 GeV 9⊢ exclusively single are constructed electrons (more)/with 8 $p_T > 25$ (20) GeV Multijet W+Jets tŦ Missing Fransversezenetsey: Single Top Dibosons $E_{T^{miss}} > 25^8 GeV$ in the muon channel $E_T^{miss} + m_T^W > 60 \text{ GeV}$ in the electron channel 5 4 At least $2_{4}(4)$ jets with $p_T > 25$ GeV and $|\eta| < 2.5$ for 3 single top (t t) analyses At least one jet must be tagged as a b-jet lepton trigger, exactly one lepton, ≥ 3 or 4 jets, b-tagged 0 jets, Eg^{miss} Data / Expectation 1.4 Di-lepton:1.4 1.2 leptom trigger, two opposite charge leptons, ≥ 2 jets, btagged jets, ET^{miss}, Z veto Full had to Big: 0.8 mixed jet t0ggers, 40 jets (80 > 55 120) + 160pT > 200GeV), b-tagged jets ≥ 2 E_{τ}^{miss} [GeV]

lets:

l+jets:

Main Systematics

LC2013

Signal Systematics

- M.C. Generator: comparison of generators.
 - maximum deviation between samples
- Parton Shower/Hadronization uncertainty
 - comparison of cluster fragmentation and string fragmentation
- Leptons:
 - Reconstruction efficiency:
 - D.D. scale factors from tag & probe with $Z \rightarrow ee (\mu \mu)$)
 - variations according to uncertainties
 - Scale and resolution:
 - MC smearing in correction factors
 - shift energy (momentum) scales to cp groups
- Jets:
 - reconstruction efficiency:
 - track jets match to calo jets / N(jets) .
 - in situ calibration error
 - scale and resolution:
 - + single hardon response (in situ) and single pion (test beam), material budget, electronic noise
 - b-jet efficiency, miss-tag rate
 - N.N. response

Event Selection

muon channel data / mc compairison

Event Selection

• electron channel data / mc comparison

GeV] May-13

Expectatio

Data / | Data / |

10

LC2013

$tt \rightarrow l+jets$ 5.8 fb⁻¹ at $\sqrt{s} = 8$ TeV ATLAS-CONF-2012-149 and ATLAS-CONF-2012-024

- Inclusive cross section at 8 TeV
 - single lepton jets channel
- Selection Optimized for Multijets backgrounds
- Main backgrounds:

G. Barone

Multijets, W+jets, Z+jets, SignleTop, Dibosons (ZZ, WW)

	$e+\geq 3$ jets	μ + \geq 3 jets
tī	31000^{+2900}_{-3100}	44000±4000
W+jets	5700 ± 2400	9000 ± 4000
Multijet	1900 ± 900	1100 ± 500
Z+jets	1400 ± 600	1200 ± 500
Single top	3260 ± 160	4610 ± 230
Dibosons	115 ± 6	158 ± 8
Total Expected	43000±4000	61000±6000
Data	40794	58872

 $tt \rightarrow l+jets \parallel 5.8 \text{ fb}^{-1} \text{ at } \sqrt{s} = 8 \text{ TeV ATLAS-CONF-2012-149}$

- Selection:
 - single electron(muon) trigger fired
 - A primary vertex with at least five tracks
 - ► Njets (p_T > 25 GeV) ≥ 3 and $|\eta|$ < 2.5
 - Reconstructed electron (muon) of p_T with E_T > 40 GeV matching the corresponding high level trigger object
 - No second electron (muon) with $E_T > 25 \text{ GeV}$ ($p_T > 25 \text{ GeV}$)
 - $E_T^{miss} > 30 \text{ GeV}$ for the electron channel $m_T^W > 30 \text{ GeV}$;
 - in the μ +jets channel: $E_T^{miss} > 20$ GeV and $m_T^W + E_T^{miss} > 60$ GeV;
 - at least one b tagged jet
- Systematics

Source	$e+\geq 3$ jets	$\mu + \ge 3 jets$	combined
Jet/MET reconstruction, calibration	6.7, -6.3	5.4, -4.6	5.9, -5.2
Lepton trigger, identification and reconstruction	2.4, -2.7	4.7, -4.2	2.7, -2.8
Background normalization and composition	1.9, -2.2	1.6, -1.5	1.8, -1.9
b-tagging efficiency	1.7, -1.3	1.9, -1.1	1.8, -1.2
MC modelling of the signal	±12	±11	±11
Total	±14	±13	±13

$tt \rightarrow l+jets$ Variables 5.8 fb⁻¹ at $\sqrt{s} = 8$ TeV ATLAS-CONF-2012-149

LC2013

• Event Aplanarity:

- transformed aplanarity A'= e-8A
- A = $3/2 \lambda 3$, smallest eigenvalue normalized momentum
- $A \rightarrow A'$ increases the separation power
- t t more isotropic than W+j

$\sigma_{tt} \rightarrow \tau + jets 4.7 \text{ fb}^{-1} \sqrt{s} = 7 \text{ TeV Eur. Phys. J. C, 73 3 (2013) 2328}$

LC2013

- Hadronically: $t\overline{t} \rightarrow b \tau_{had} v_{\tau} b q q$
- Motivations:
 - Probe flavour dependent effects in top decays
 - In BSM searches: dominant background
 - If charged Higgs enhancement of $\sigma_{t\bar{t}}$
- Backgrounds:
 - multi-jets, jet faking Thad, single top, W+jets
- Strategy:
 - ▶ require ≥ 5 jets, $N(b^{tag}) \ge 2$: 4 for hadronic top jets identification I for τ_{had} candidate
 - *p*_T > 20 GeV, |η|<2.5, *p*_T(τ) > 40 GeV
 - template fit to number of tracks associated to Thad
 - Systematics: ISR/FSR(15%), b-tag (9%), Jet energy scale (5%)
- Result in τ+jets

$$ATLAS$$

$$f = 1.67 \text{ fb}^{-1} \sqrt{s} = 7 \text{ TeV}$$

$$f = 0 \text{ Data 2011}$$

$$f = 1.67 \text{ fb}^{-1} \sqrt{s} = 7 \text{ TeV}$$

$$f = 0 \text{ Data 2011}$$

$$f = 1.67 \text{ fb}^{-1} \sqrt{s} = 7 \text{ TeV}$$

$$f = 0 \text{ Data 2011}$$

$$f = 1.67 \text{ fb}^{-1} \sqrt{s} = 7 \text{ TeV}$$

$$f = 0 \text{ Data 2011}$$

$$f = 1.67 \text{ fb}^{-1} \sqrt{s} = 7 \text{ TeV}$$

$$f = 0 \text{ Data 2011}$$

$$f = 1.67 \text{ fb}^{-1} \sqrt{s} = 7 \text{ TeV}$$

$$f = 0 \text{ Data 2011}$$

$$f = 1.67 \text{ fb}^{-1} \sqrt{s} = 7 \text{ TeV}$$

$$f = 0 \text{ Data 2011}$$

$$f = 1.67 \text{ fb}^{-1} \sqrt{s} = 7 \text{ TeV}$$

$$f = 0 \text{ Data 2011}$$

$$f = 1.67 \text{ fb}^{-1} \sqrt{s} = 7 \text{ TeV}$$

$$f = 0 \text{ Data 2011}$$

$$f = 0 \text{ Data 201}$$

$$f = 0 \text{ Da$$

 $\sigma_{t\bar{t}} = 194 \pm 18(stat) \pm 46(syst) \text{ pb}$

Events

compare/include T+e(µ) $\sigma_{
m t\bar{t}} = 186 \pm 13(
m stat) \pm 20(
m syst) \pm 7(
m lumi)~
m pb~$ Phys. Lett. B 717(2012) 89-108)

Good agreement with the theory:
$$\sigma_{
m t\bar{t}}^{
m theor}=167^{+17}_{-18}~
m pb$$

t t Jet Multiplicity II 4.7 fb⁻¹ $\sqrt{s} = 8$ TeV AT

≥8

n_{jets} ,

≥8

n_{jets}

Top Mass: 14.7 fb^{-1} , $\sqrt{s} = 7 \text{ TeV}$, ATLAS-CONF-2013-046

LC2013

220

simultaneous fit to all templates.

Top Mass: 3D Template Fit II

LC2013

	2d-analy	vsis	3d-a	nalysis	
	$m_{\rm top}$ [GeV]	JSF	$m_{\rm top}$ [GeV]	JSF	bJSF
Measured value	172.80	1.014	172.31	1.014	1.006
Data statistics	0.23	0.003	0.23	0.003	0.008
Jet energy scale factor (stat. comp.)	0.27	n/a	0.27	n/a	n/a
bJet energy scale factor (stat. comp.)	n/a	n/a	0.67	n/a	n/a
Method calibration	0.13	0.002	0.13	0.002	0.003
Signal MC generator	0.36	0.005	0.19	0.005	0.002
Hadronisation	1.30	0.008	0.27	0.008	0.013
Underlying event	0.02	0.001	0.12	0.001	0.002
Colour reconnection	0.03	0.001	0.32	0.001	0.004
ISR and FSR (signal only)	0.96	0.017	0.45	0.017	0.006
Proton PDF	0.09	0.000	0.17	0.000	0.001
single top normalisation	0.00	0.000	0.00	0.000	0.000
W+jets background	0.02	0.000	0.03	0.000	0.000
QCD multijet background	0.04	0.000	0.10	0.000	0.001
Jet energy scale	0.60	0.005	0.79	0.004	0.007
<i>b</i> -jet energy scale	0.92	0.000	0.08	0.000	0.002
Jerenergy resolution	0.22	0.006	0.22	0.006	0.000
Jegeconstruction efficiency	0.03	50.000V	data 0.05	0.000	0.000
b-tagging efficiency and mistag rate	0.17B	est(Fittb	ackgroundd81	0.001	0.011
Letton energy scale	0.03 _P	0.000	0.04	0.000	0.000
Missing transverse momentum	0.01	0.000	0.03	0.000	0.000
Pile-up	$m_{t_0} = 37$	2.010007	stat+JSF+bJ	0.000	0.001
Total systematic uncertainty	$b_{13} = 1.0$	0960420	stat 1.35	0.021	0.020
Total uncertainty	2.05	0.021	1.55	0.021	0.022
300					
200					

May-13

Top Mass 4.7 fb⁻¹, $\sqrt{s} = 7$ TeV, ATLAS-CONF-2013-046

CONF-2013-0	46		L	
	ATLAS	6 Prelimin	ary	May 2013
1 fb ⁻¹ l+jets (2d)	-		⊣ 174.53 ± 0.61 ± 0.43	3 ± 2.27
4.7 fb⁻¹ l+jets (3d)	prel. 🛏 н	-	$172.31 \pm 0.23 \pm 0.27$	7 ± 0.67 ± 1.35
CMS 5.0 fb ⁻¹ l+jets	; – 1	●! 1	173.49 ± 0.27 ± 0.3	3 ± 0.98
D0 3.6 fb ⁻¹ l+jets		┝-┝╾╋╾╣┝┥	174.94 ± 0.83 ± 0.5	3 ± 1.12
CDF 8.7 fb ⁻¹ l+jets	F##		$172.85 \pm 0.52 \pm 0.4$	9 ± 0.85
Tevatron Comb. 2	013		173.20 ± 0.51 ± 0.36 stat JSF	6 ± 0.61 bJSF syst
165	170	175	180	
	r	n [Ge	eV1	

- Improvements:
 - Sensitivity to m_{top} improved by 20%.
 - The total systematic uncertainty is reduced by 40%
 - bJES strongly reduced
 - Better modeling of underlying partonic quantities
 - tails of the transfer functions
- Future improvements
 - better understanding b-tagging systematics
 - reduction of statistical components in systematics with more data
 - Determination of JSF in kinematic regions.
- Result:

 $m_{\rm top} = 172.31 \pm 0.75(\text{stat}+\text{JSF}+\text{bJSF}) \pm 1.35(\text{syst}) \text{ GeV}$

Top Polarization $I_{4.7 \text{ fb}^{-1}} \sqrt{s} = 7 \text{ TeV ATLAS-CONF-2012-133}$

- Unpolarized Standard Model top
- $\begin{array}{c} \bullet \text{ Some BSN models, top juarks}(cos \theta_l < 0) \\ = produced polarized \\ 2 & N(cos \theta_l > 0) + N(cos \theta_l < 0) \end{array}$

- Method and Extraction
 - lepton polar angle (top rest frame) (θ_i) :

$$f = \frac{1}{2} + \frac{N(\cos(\theta_i) > 0) - N(\cos(\theta_i) < 0)}{N(\cos(\theta_i) > 0) + N(\cos(\theta_i) < 0)}$$

LC2013

- Simultaneous over e, μ fit:
 - per channel fit of W+j
 - uncertainties absorption by W+j fraction

Channel	$N_{t\bar{t}}$	$\sigma_{t\bar{t}}$ (pb)
$e+\geq 3$ jets	31050 ± 350	239 ± 3
$\mu + \geq 3$ jets	45000 ± 400	242 ± 2
$l+\geq 3$ jets	76000 ± 500	241±2

 Good Agreement with theoretical prediction:

$$\sigma_{t\bar{t}} = 241 \pm 2 \text{ (stat)} \pm 31 \text{ (syst)} \pm 9 \text{ (lumi) pb}$$

$$\sigma_{t\bar{t}}^{theor} = 238^{+22}_{-25} \text{ pb}$$

top mass @172.5 GeV
and NNLO QCD HATHOR

Single Top cross section 5.8 fb⁻¹, at $\sqrt{s} = 8$ TeV, ATLAS-CONF-2012-132

- Selection:
- N.N. discrimination
 - min $|p_z(v)|$ for quadratic solution choice
- cross section extraction: likelihood fit
 - extraction of β scale factors
 - + N(evt) = β × expectation
 - combined fit in 2 and 3 jet bins

$t t Spin Correlation 2.1 fb^{-1} \sqrt{s} = 7 \text{ TeV PRL 108, 212001 (2012)}$

LC2013

• Template fit on $\Delta \varphi$ distributions

 $A_{\text{measured}} = A^{\text{SM}} \cdot f^{\text{SM}}$

- linear superposition of template modeling the correlated (fSM) and uncorrected (I - fSM) hypotheses
- Results projected in two basis:
 - helicity base (quark direction of flight in the C.M.)

 $A_{\text{helicity}} = 0.40 \pm 0.04(\text{stat}) \stackrel{+0.08}{_{-0.07}}(\text{syst})$

maximal basis (optimized for tt production from gg)

 $A_{\text{maximal}} = 0.57 \pm 0.06 \text{(stat)} ^{+0.12}_{-0.10} \text{(syst)}$

- Consistent with S.M. prediction
 - ✦ A_{helicicy}=0.3 I and A_{maximal}= 0.44
- First Observation
 - No correlation excluded at 5.1 σ

Uncertainty source	$\Delta f^{ m SM}$
Data statistics	± 0.14
MC simulation template statistics	± 0.09
Luminosity	± 0.01
Lepton	± 0.01
Jet energy scale, resolution and efficiency	± 0.12
NLO generator	± 0.08
Parton shower and fragmentation	± 0.08
ISR/FSR	± 0.07
PDF uncertainty	± 0.07
Top quark mass	± 0.01
Fake leptons	+0.16/-0.07
Calorimeter readout	± 0.01
All systematics	+0.27/-0.22
Statistical + Systematic	+0.30/-0.26

Single Top CP Violation

- Single Top production
 - direct probe of couplings in the W_{tb} vertex
- most general S.M. lagrangian at tree level:

 $V_{L} \sim V_{tb} \sim I: \qquad \mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}} \overline{b} \gamma^{\mu} \left(V_{L} P_{L} + V_{R} P_{R} \right) t W_{\mu}^{-} - \frac{g}{\sqrt{2}} \overline{b} \frac{i \sigma^{\mu\nu} q_{\nu}}{m_{W}} \left(g_{L} P_{L} + g_{R} P_{R} \right) t W_{\mu}^{-} + \text{h.c.}$

W

W

- while the anomalous couplings V_R and $g_{L,R} = 0$
- Deviations from:
 - W polarization fractions
 - Lepton Angular asymmetries from the W decay
- For unpolarised top quark production
- only meaningful reference direction: momentum (q) of the W boson in the top quark rest frame (helicity basis)
 - + corresponding angle $\theta *$
 - In top quark decays θ angle between the direction of the lepton from the W decay in the W boson rest frame and a certain reference direction.

q

Whelicity ATLAS+CMS I $\sqrt{s} = 7$ TeV ATLAS-CONF-2013-033

LC2013

- Combination of F_{0} , F_{R}
 - $\blacktriangleright F_R = I F_O F_L$
- All results before combination:

Measurement	F_0	F_L	F_R
ATLAS 2010 (single lepton) [Alj2010]	$0.652 \pm 0.134 \pm 0.092$	$0.359 \pm 0.088 \pm 0.056$	$-0.011 \pm 0.060 \pm 0.046$
ATLAS 2011 (single lepton) [Alj2011]	$0.642 \pm 0.030 \pm 0.071$	$0.344 \pm 0.020 \pm 0.042$	$0.014 \pm 0.014 \pm 0.055$
ATLAS 2011 (dilepton) [Adil2011]	$0.744 \pm 0.050 \pm 0.087$	$0.276 \pm 0.031 \pm 0.051$	$-0.020 \pm 0.026 \pm 0.065$
CMS 2011 (single lepton) [Clj2011]	$0.567 \pm 0.074 \pm 0.048$	$0.393 \pm 0.045 \pm 0.024$	$0.040 \pm 0.035 \pm 0.043$

	LHC con	LHC combination	
Category	F_0	F_L	
Detector modeling			
Detector model	0.019	0.011	
Jet energy scale	0.020	0.012	
Luminosity and pile-up	0.006	0.003	

Signal and background modeling					
Monte Carlo	0.012	0.008	(
Radiation	0.024	0.012			
Top-quark mass	0.019	0.012			
PDF	0.008	0.004			
Background (MC QCD)	0.003	0.001			
Background (MC W + jets)	0.007	0.002			
Background (MC other)	0.011	0.006			
Background (data-driven)	0.013	0.008			
Method-specific uncertainties	5				

Method	0.008	0.005
Wiethod	0.000	0.005

Total uncertainties

Total systematic uncertainty	0.048	0.028
Statistical uncertainty	0.034	0.021
Total uncertainty	0.059	0.035

• Uncertainties:

- statistical ~50% larger than respective largest systematic
- Jet Energy Scale, Detector Modeling, Radiation, Top Mass

W helicity ATLAS+CMS II $\sqrt{s} = 7$ TeV ATLAS-CONF-2013-033

- Combination of F_0 , F_R
 - $F_R = I F_0 F_L$

G. Barone

- taking into account correlated systematics
- Cobined Results:
 - global correlation ρ = 0.86
 - $\chi^2 \sim 3.3$ for 8 measurements

 $F_{0} = 0.626 \pm 0.034 \text{ (stat.)} \pm 0.048 \text{ (syst.)}$ $F_{L} = 0.359 \pm 0.021 \text{ (stat.)} \pm 0.028 \text{ (syst.)}$ $\overset{\text{L}^{-}}{}_{0.5} \text{ ATLAS and CMS preliminary}$ $L_{\text{int}}=35 \text{ pb}^{-1} - 2.2 \text{ fb}^{-1}$ s = 7 TeV May-I3

- Consistent with SM predictions:
 - leading order
 - including one loop E.W. corrections
- First Limit on the I(g_R):
 - ▶ prediction: [-7.17 1.23*i*] × 10⁻³
 - I(g_R)~0.17 R(g_R): Non S.M. contributions can have sizable CP-violating component

Single Top CP Violation 4.66 fb⁻¹, $\sqrt{s} = 7$ TeV, ATLAS-CONF-2013-032

LC2013

• Unfolding to parton level of $\cos \theta$:

$$N_j^{\text{unfolded}} = \frac{M_{ji}^{-1}(N_i^{\text{data}} - N_i^{\text{bkg}})}{A_j}$$

• Systematics:

Source	$\Delta A_{ m FB}^{ m N}$
<i>t</i> -channel generator	+0.024 / -0.024
$t\bar{t}$ generator and parton shower	+0.010 / -0.010
Background normalisation	+0.008 / -0.008
Jet energy resolution	+0.007 / -0.007
Jet energy scale	+0.005 / -0.009
Lepton id, reco., trigger and scale	+0.004 / -0.006
PDFs	+0.003 / -0.003
Unfolding	+0.003 / -0.003
$E_{ m T}^{ m miss}$	+0.002 / -0.004
<i>b</i> -tagging	+0.002 / -0.002
W+jets shape	+0.001 / -0.001
ISR/FSR	+0.001 / -0.001
Jet reconstruction efficiency	+0.001 / -0.001
Luminosity	+0.001 / -0.001
Jet vertex fraction	<0.001 / <0.001
Total systematic	+0.029 / -0.031

tt+HFIV

LC2013

• Search for t t associated with <u>G</u>eV lets / 1.00 GeV 10⁷ ATLAS 10⁷ ATLAS Jets / 1.00 GeV Jets / 1.00 Ge^v Jets / 1.00 ATEAS ATLAS heavy-flavor (HF) quarks: 10⁷ 10⁷ ●LDdtta= 4.7 fb 10⁶ LDdatta⊧ 4.7 fb⁻¹ 10⁶ s _____tetseV b-jets s – 7 TeV $\int L dt = 4.7 \text{ fb}^{-1}$ Llightit jeta 7 fb 10⁶ 10⁶ 10⁵ 10⁵ light jets light jets √s = 7 TeV 10⁵ s = 7 TeV 10⁵ 10⁴ 10⁴ 10⁴ 10⁴ Number of events 10^{3} 10³ Process 10³ 10³ 10² 10² tŦ 106.7 ± 3.4 10² 10² 10 10 10 10 1 2.2 ± 0.5 Single top 1 10⁻¹ 2 3 -1 0 10⁻¹ 0.2 ± 0.1 10⁻ Z + jets7 0 2 3 4 6 -1 Verte mass1[GeV]2 5 Medium purity Vertex mass [GeV] Vertex mass [GeV] 0^{+5}_{-0} Fake leptons $109 \, {}^{+6}_{-3} \pm 35$ Jets / 1.00 GeV Total expectation 10⁷ **ATLAS** Data Jets / 1.00 GeV *b*-jets 10⁷ ATLAS $\int L dt = 4.7 \text{ fb}^{-1}$ 10⁶ *c*-jets 106 Data $\int L dt = 4.7 \text{ fb}^{-1}$ 10⁶ √s = 7 TeV light jets 10⁵ s = 7 TeV 10⁵ 10⁴ 10⁴ 10³ 10³ 10² % (A x $\varepsilon_{\rm HF}$) % (full calculat03n) Source 10 0.2 Lepton reconstruction 0.2 10 1 Jet reconstruction and calibration 11.2 5.4 1 10⁻¹ 2 5 3 4 $E_{\rm T}^{\rm miss}$ reconstruction 0.9 0.6 10⁻¹ 2 0.00 Vertex mass [GeV] 3.4 1 Fake lepton estimate Vertex mas Wevpurity Tagging efficiency for *b*-jets 3.1 2.4 5.9 Tagging efficiency for *c*-jets 21.2 Tagging efficiency for light jets 8.4 0.2 Jets / 1.00 GeV 10⁷ **ATLAS** Data 7.3 1.2 Fragmentation modeling b-jets $\int L dt = 4.7 \text{ fb}^{-1}$ 10⁶ *c*-jets 3.4 4.2 Generator variation light jets √s = 7 TeV 10⁵ *c*-jet efficiency light-flavor rejection *b*-purity *b*-jet efficiency Initial- and final state radition 2.5 2.2 2.8 PDF uncertainties 1.0 10⁴ Tight 60% 17% 230 Additional fit uncertainties 6.6 _ 10³ 100 Medium 10% 7% $^{+69.0}_{-0.0}$ $^{+69.0}_{-0.0}$ Fiducial flavor composition 10² Low 5% 6% 75 $^{+74.2}_{-27.4}$ $^{+69.9}_{-11.9}$ Total systematic 10

G. Barone

High Purity Vertex mass [GeV]

6

5

4

1

10⁻¹-1

0

2

3

LC2013

$t' \rightarrow Ht \prod_{14.3 \text{ fb-} 1/s} = 8 \text{ TeV ATLAS-CONF-2013-018}$

- No observation, 95% C.L. exclusions for the weak isospins:
 - doublet: an observed (expected) $m_{t'} > 790$ (745) GeV
 - most stringent limit to date
 - singlet: the observed (expected) $m_{t'} > 640 (615) \text{ GeV}$

b^* -quark production 4.7 fb-1 $\sqrt{s} = 7$ TeV Phys. Lett. B 72^{*} (2013) 171-189

- First search for excited quarks coupling to 3^{thd} gen. fermions
 - $\flat b^* \rightarrow Wt$
 - Randall–Sundrum models (strong interaction)
 - with a heavy gluon partner (ex. composite Higgs models)
- Dilepton channel:
 - two opposite charge lepton, one jet, no b-tag
 - ► H_T discriminant
- semi-leptonic:
 - one lepton $N(b-tag) \ge 1$
 - reconstructed mass
- Absence of deviations from S.M. prediction
 - set limits

G. Barone

b^* -quark production 4.7 fb-1 \sqrt{s} = 7 TeV Phys. Lett. B 721 (2013) 171-189

- template likelihood fit
- left-handed models
 - unit strength chromomagnetic coupling
 - *m_{b*}* < 870 GeV excluded at 95% C.L.

- right handed models:
 - vector-like b* couplings

- ► $k_L^b = g_L = 0, k_R^b = g_R = 1 m_{b^*} < 920 \text{ GeV}$ excluded at 95%
- $k_L^b = g_L = k_R^b = g_R = 1, m_{b^*} < 920 \text{ GeV}$ excluded at 95%

t'→Ht

LC2013

• Systematics:

	\geq 6 jets, 2 <i>b</i> -tags	\geq 6 jets, 3 <i>b</i> -tags	\geq 6 jets, \geq 4 <i>b</i> -tags	
$t\bar{t}$ +heavy-flavour jets	1500 ± 900	900 ± 400	170 ± 70 75 ± 22	
<i>tt</i> +light-flavour jets	9600 ± 1000	1900 ± 350		
W+jets	250 ± 130	50 ± 30	5 ± 3	
Z+jets	50 ± 40	9 ± 6	0.5 ± 0.9	
Single top	300 ± 70	75 ± 18	7 ± 3	
Diboson	1.7 ± 0.6	0.3 ± 0.1	0.03 ± 0.03	
$t\bar{t}V$	70 ± 20	36 ± 12	7 ± 3	
tīH	28 ± 4	31 ± 6	12 ± 3 0.15 ± 0.06	
Multijet	49 ± 23	1.7 ± 0.8		
Total background	al background 11860 ± 260		270 ± 60	
Data	a 11885		318	
Doublet				
$t'\bar{t'}(400)$	550 ± 70	1100 ± 100	790 ± 160	
$t'\bar{t'}(600)$	4.3 ± 1.2	94 ± 7	79 ± 18	
$t'\bar{t'}(800)$	$\dot{r}(800) = 0.12 \pm 0.05$		9.1 ± 2.1	
Singlet				
$t'\bar{t'}(400)$	290 ± 30	650 ± 80	330 ± 70	
$t'\bar{t'}(600)$	2.3 ± 0.4	61 ± 7	36 ± 9	
$t'\bar{t'}(800)$	$\dot{V}(800)$ 0.06 ± 0.01		4.2 ± 1.1	

LC2013

 $W \rightarrow t \overline{b}$ 14.3 fb-1 \sqrt{s} = 8 TeV ATLAS-CONF-2013-050

• No deviation observed, 95% C.L. on $m_{W'}$

	W' _L		W'_R	
W' mass (TeV)	Theory Obs. limit		Theory	Öbs. limit
0.5	17	4.0	23	2.2
1.0	1.0 0.24	1.4	0.17	
1.5	0.13	0.075	0.17	0.051
2.0	0.022	0.064	0.028	0.056
2.5	0.0044	0.11	0.0054	0.10
3.0	0.0011	0.20	0.0013	0.19

Expected BDT output for W_R in 3 jet **Signal Region**

3

Exotics Summary

LC2013

		ATLAS Exotics S	earches* - 95% CL Lo	wer Limits (Stat	us: HCP 2012)
	Large ED (ADD) : monojet + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [1210.449 ⁴]		4.37 TeV $M_D(\delta=2)$	
S	Large ED (ADD) : Monophoton + $E_{T,miss}$	L=4.6 fb ⁻¹ , 7 TeV [1209.4625]	1.93 TeV ///	D(0=2)	ATLAS
ИС	Large ED (ADD) : diploton & dilepton, $m_{\gamma\gamma/\parallel}$	L=4.7 fb ⁻ , 7 TeV [1211.1150]	t ti Till Compa	4.18 TeV /// _S (FILZ 0=3, I	Preliminary
Sic	OED : diproton + $L_{T,miss}$	L=4.8 fb ⁻¹ , 7 leV [A1LAS-CONF-2012-072]	1.41 lev Compa		
en	572_2 ED . ullepton, m_{\parallel} BS1 : diphoton & dilepton m	L=4.9-5.0 ID, 7 IEV [1209.2555]	2.22 ToV	Graviton mass $(k/M) =$	0.1)
im	BS1 : 77 resonance $m_{\gamma\gamma/\parallel}$	L=4.7-5.0 m , 7 lev [1210.0509]	2.25 TeV	$(k/M_{\rm H} = 0.1)$	0.1)
n d	BS1 WW resonance m_{-1}	L = 1.0 ID, 7 TeV [1203.07 To]	1 23 TeV Graviton	$mass(k/M_{-1} - 0.1)$	$\int Ldt = (1.0 - 13.0) \text{ fb}^{-1}$
tra	RS q \rightarrow tt (BR=0.925) : tt \rightarrow l+jets, m	$l = 4.7 \text{ fb}^{-1}$ 7 TeV [ATL AS-CONF-2012-136]	1.9 TeV ()	mass (<i>Krim</i> _{Pl} = 0.1)	J
Щ	ADD BH $(M_{TH}/M_{p}=3)$; SS dimuon, N_{th}	$L=1.3 \text{ fb}^{-1}$, 7 TeV [1111.0080]	1.25 TeV M_{\odot} ($\delta = 6$)		I s = 7, 8 TeV
	ADD BH $(M_{TL}/M_{D}=3)$: leptons + jets, Σp	$l = 1.0 \text{ fb}^{-1}$ 7 TeV [1204 4646]	1.5 TeV Μ _α (δ)	, =6)	
	Quantum black hole : dijet, F (m_{ij})	$L=4.7 \text{ fb}^{-1}$, 7 TeV [1204.4040]		11 TeV $M_{\rm p}(\delta=6)$	
	qqqq contact interaction $\chi(m^{\mu})$	L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-038]		7.8 TeV Λ	
0	qqll Cl : ee & μμ, m	L=4.9-5.0 fb ⁻¹ , 7 TeV [1211.1150]		13.9 Te\	Λ (constructive int.)
0	uutt CI : SS dilepton + jets + $E_{T mino}$	L=1.0 fb ⁻¹ , 7 TeV [1202.5520]	1.7 TeV Λ		
	$Z'(SSM): m_{oclose}$	L=5.9-6.1 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-129]	2.49 TeV	Z' mass	
	Z' (SSM) : <i>m</i>	L=4.7 fb ⁻¹ , 7 TeV [1210.6604]	1.4 TeV Z' mas	S	
	W' (SSM) : $m_{T_{ols}}$	L=4.7 fb ⁻¹ , 7 TeV [1209.4446]	2.55 TeV	W' mass	
2	W' (\rightarrow tq, g_=1) : m_{tq}	L=4.7 fb ⁻¹ , 7 TeV [1209.6593] 4	30 Gev W' mass		
	$W'_{B} (\rightarrow tb, SSM) : m_{H}$	L=1.0 fb ⁻¹ , 7 TeV [1205.1016]	1.13 TeV W' mass		
	W* : <i>m</i> _{Te/u}	L=4.7 fb ⁻¹ , 7 TeV [1209.4446]	2.42 TeV	W* mass	
~	Scalar LQ pair (β =1) : kin. vars. in eeji, evji	L=1.0 fb ⁻¹ , 7 TeV [1112.4828]	660 Gev 1 st gen. LQ mass		
G	Scalar LQ pair (β =1) : kin. vars. in µµjj, µvjj	L=1.0 fb ⁻¹ , 7 TeV [1203.3172]	685 GeV 2 nd gen. LQ mass		
	Scalar LQ pair (β =1) : kin. vars. in $\tau\tau j j$, $\tau v j j$	L=4.7 fb ⁻¹ , 7 TeV [Preliminary]	538 GeV 3rd gen. LQ mass		
S	4^{th} generation : t't' \rightarrow WbWb	L=4.7 fb ⁻¹ , 7 TeV [1210.5468]	656 Gev t' mass		
ark	4^{th} generation : b'b'($T_{5/3}T_{5/3}$) \rightarrow WtWt	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-130]	670 GeV b' (T) mass		
ļuć	New quark b' : b'b' \rightarrow Zb+X, m_{z_b}	L=2.0 fb ⁻¹ , 7 TeV [1204.1265] 40	0 GeV b' mass		
2	Top partner : TT \rightarrow tt + A ₀ A ₀ (dilepton, M ₁₂)	L=4.7 fb ⁻¹ , 7 TeV [1209.4186]	483 GeV T mass (m(A) < 100 C	GeV)	
ev	Vector-like quark : CC, m_{lvq}^2	L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-137]	1.12 TeV VLQ mass	(charge -1/3, coupling)	$c_{qQ} = v/m_Q$
2	Vector-like quark : NC, m _{llq}	L=4.6 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-137]	1.08 TeV VLQ mass	(charge 2/3, coupling κ_c	$_{\rm Q} = v/m_{\rm Q}$
it. n.	Excited quarks : y-jet resonance, m	L=2.1 fb ⁻¹ , 7 TeV [1112.3580]	2.46 TeV	q* mass	
SC La	Excited quarks : dijet resonance, m_{ii}	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-148]	3.	84 TeV q* mass	
Шч	Excited lepton : I- γ resonance, m_{μ}	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-146]	2.2 TeV	* mass ($\Lambda = m(I^*)$)	
	Techni-hadrons (LSTC) : dilepton, $m_{ee/\mu\mu}$	L=4.9-5.0 fb ⁻¹ , 7 TeV [1209.2535]	850 GeV ρ _τ /ω _τ mass (<i>m</i>	$m(\rho_T/\omega_T) - m(\pi_T) = M_w)$	
	Techni-hadrons (LSTC) : WZ resonance (vIII), m	L=1.0 fb ⁻¹ , 7 TeV [1204.1648]	483 GeV ρ_{T} mass $(m(\rho_{T}) = m(\pi_{T})$	$+ m_W, m(a_T) = 1.1 m(\rho_T)$)
er	Major. neutr. (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ , 7 TeV [1203.5420]	1.5 TeV N mas	$ss(m(W_R) = 2 \text{ TeV})$	
th	W _R (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ , 7 TeV [1203.5420]	2.4 TeV	W_{R} mass (<i>m</i> (N) < 1.4]	ēV)
0	$H_{L}^{\pm\pm}$ (DY prod., BR($H^{\pm\pm} \rightarrow II$)=1) : SS ee (µµ), m	L=4.7 fb ⁻¹ , 7 TeV [1210.5070] 40	9 GeV $H_{L}^{\pm\pm}$ mass (limit at 398 Ge	eV for μμ)	
	H_{L}^{reg} (DY prod., BR($H_{L}^{\text{reg}} \rightarrow e\mu$)=1) : SS $e\mu$, $m_{e\mu}^{\text{reg}}$	L=4.7 fb ⁻¹ , 7 TeV [1210.5070] 375	GeV H ^{±±} mass		
	Color octet scalar : dijet resonance, m_{ij}	L=4.8 fb ⁻¹ , 7 TeV [1210.1718]	1.86 TeV SC	alar resonance mass	
		<u> </u>			للبيانات مد
		10 '	1	10	10
*0	he a clastice of the excitable mass limits on new states of				Mass scale [TeV]

*Only a selection of the available mass limits on new states or phenomena shown

