Sensitive Detector Segmentation

Norman Graf (SLAC)

LC-ECFA Meeting, DESY May 28, 2013

Problem Statement

- LC Detectors being considered for the ILC and CLIC are highly segmented, resulting in hundreds of millions to billions of readout channels.
- Implementing each readout channel as a separate volume in Geant4 is impractical.
- Define Sensitive Detectors as larger volumes and use "virtual segmentation" to define readouts, e.g.
 - Tracking sensitive detector is silicon wafer, virtual segmentation returns pixels or strips.
 - TPC sensitive detector is full endplate, virtual segmentation returns pads
 - Calorimeter sensitive detector is scintillator sheet, or gas volume, virtual segmentation returns cells.

Functionality

- Given local position, return cell ID
- Given cell ID, return local position
- Given cell ID, return list of neighboring cell IDs
- Return cell size (allows energy density clustering)

Dependencies

- Need to have a separate package containing segmentation classes on which both the simulation and reconstruction packages depend.
- Do not want to couple the reconstruction to Geant4.
- Also don't want to have two separate implementations of segmentors.

Cartesian Grid

- For each grid

 - deltaX
 - □ y
 - deltaY
- Allows for effective gaps in between pads

R-Phi Readout, e.g. BeamCal

- For each annulus:
 - rmin
 - rmax
 - nCells
 - phi0
 - deltaPhi
- Allows for effective gaps in both radius and phi
- Allows for staggered cells

Hexagons

- Define hexagon "radius"
- Can define effective gaps between cells using two "radii"

Attaching Segmentation Class to Volume

 Need the ability to specify location of origin and orientation of segmentation coordinates with respect to sensitive geometric volume.

Issues

- In calorimeters, how to handle Geant4 steps which straddle cell borders or cross "gaps"
- How to handle edges of segmentation classes
 - irregular cell sizes and shapes
 - missing neighbors
- Semi-Digitization
 - How to handle position-sensitive digitization such as charge-sharing across boundaries (e.g. RPC) or efficiency of light collection in scintillator readout.

Software Architecture

- Segmentation classes should be closely related to Geant4 primitive volumes for efficiency in defining, implementing and utilizing them.
- Do not want reconstruction to depend on Geant4
- Standalone package upon which both simulation and reconstruction classes depend.
- Runtime binding via plugin mechanism might lead to problems of provenance.
- Prefer compile-time binding of classes, run-time definitions for parameters.