

Precise luminosity measurement at 3 TeV CLIC

S. Lukić
FCAL and CLIC collaborations
ECFA 2013, Hamburg

Luminosity measurement de

- Counting Bhabha pairs in coincidence $L = \frac{N(\Xi(E_{1,2}^{lab}, \Omega_{1,2}^{lab}))}{\sigma(Z(E_{1,2}^{CM}, \Omega_{1,2}^{CM}))}$ Precision ~0.6 permille at LEP
- A number of systematic effects limiting precision, at future colliders notably the beam-beam effects
 - Luminosity > 2 orders of magnitude higher than @LEP
 - Higher energy

Beam-beam effects

- EM interaction at bunch crossing
 - $-\gamma \approx 6 \times 10^6$
 - "Pinch" effect strong focusing of the bunches
 - Beamstrahlung (before collision)
 - Energy loss
 - Shift of CM in the phase space Counting loss
 - EM deflection of the final charged particles – minor additional counting loss

E_{CM} spectrum at CLIC

CM energies of colliding e⁻e⁺ pairs in Guinea-Pig

Angular loss at CLIC

 Distortion of polar angles of the outgoing leptons due to the beamstrahlung emission

- Beam-beam effects simulated by Guinea-PIG
- Polar angles undergo the Lorentz boost along the beam axis (to a very good approximation)

Bhabha scattering and the beam-beam effects

- ISR and Beamstrahlung before collision escape detection
- FSR and Beamstrahlung of the final particles summed with electrons in the calorimeter
- Reconstructed kinematics of the collision frame (E_{CM}, β, θ)

Boost of the polar angles 🔠

- Among events with a given β_{coll} (dashed line), the angular counting loss can be analytically calculated
- Correct by the weighting factor

$$w(\beta_{coll}) = \frac{\int_{\theta_{min}}^{\theta_{max}} \frac{d\sigma}{d\theta} d\theta}{\int_{\theta_{min}}^{coll} \frac{d\sigma}{d\theta} d\theta}$$

Test of the angularloss correction

- Guinea-Pig + BHLUMI
- CM energies of Bhabha events (after emission of ISR, LumiCal energy response included)

Test of the angularloss correction

- To quantify the agreement, the integral count in the top 5% of CM energy and in the tail from 80% to 90% was compared to the control histogram:
 - top 5%: $\Delta L/L = (0.1 \pm 0.4) \times 10^{-3}$
 - 80%-90%: $\Delta L/L = (-3.6 \pm 1.8) \times 10^{-3}$ (corrected "lost events"): $\Delta L/L = (-0.9 \pm 1.8) \times 10^{-3}$
- No significant deviation in the corrected peak
- Deviation in the tail mostly due to the "lost events" (off-axis ISR)

Systematic effects

- Off-axis ISR $(\vec{\beta}_{coll} \neq \beta \hat{z})$ MC correction reliable
- Most energetic shower occasionally not containing the final electron
- Simplified expression for $d\sigma/d\theta$ ($\sim\theta^{-3}$)
- Assumption of clean separation of ISR from FSR

ISR energy loss deconvolution

$$h(E_{CM,rec}) = \int_{0}^{E_{max}} B(E_{CM}) \frac{1}{E_{CM}} \Im(\frac{E_{CM,rec}}{E_{CM}}) dE_{CM}$$

ISR distribution parametrized from BHLUMI events

ISR energy loss deconvolution

- Top 5%: $\Delta L/L = (+1.3 \pm 2.0) \times 10^{-3}$
- 80% 90%: $\Delta L/L = (-2.3 \pm 3.9) \times 10^{-3}$

CLIC - Summary

Step	Top 5% Δ <i>L/L</i> (10 ⁻³)	80% - 90% Δ <i>L/L</i> (10 ⁻³)
BS+ISR correction	-0.1 ± 0.4	-3.6 ± 1.8
Deconvolution	1.3 ± 2.0	-2.3 ± 3.9
Energy resolution	0.05 ± 0.03	0.09 ± 0.09
EMD (uncorrected)	0.50 ± 0.05	1.08 ± 0.08
high $oldsymbol{eta}_{coll}$	< 0.1	2.7 ± 0.1
total	1.4 ± 2.0	2.7 ± 4.3

Conclusions

- The luminosity spectrum at CLIC extends down to almost zero CM energy
- Bhabha events at lower energies mostly invisible to the LumiCal
- Above 2200 GeV, the luminosity can be measured with precision of few permille
- The luminosity spectrum reconstructed to within the energy resolution of the luminometer

S. Lukić et al., JINST 8 (2013) P05008

S. Lukić, LCD-Note-2012-008

ILC case:

S. Lukić and I. Smiljanić, arXiv:1211.6869

I. Božović-Jelisavčić et al., arXiv:1304.4082

Thank you for your attention