

Measurement of the Higgs boson decay to muons at a CLIC collider operating at 1.4 TeV and 3 TeV

Ivanka Bozovic-Jelisavcic [on behalf of the CLIC Detector and Physics Study]

Christian Grefe, CERN Strahinja Lukic, Vinca Belgrade Gordana Milutinovic Dumbelovic, Vinca Belgrade Mila Pandurovic, Vinca Belgrade

Overview

- Motivation for the measurement
- Detector for CLIC
- Higgs production and decays at CLIC
- Event simulation
- Method of the measurement
- Multivariate approach in background suppression
- Di-muon invariant mass fit and BR extraction
- Impact of momentum resolution and forward electron tagging
- Conclusion

Motivation

- In SM Higgs BRs depend only on Higgs mass ⇒ potential probe for New Physics (i.e. coupling to second-generation fermions)
- Challenging measurement due to low signal yield (estimated $BR(h \rightarrow \mu^{-}\mu^{+}) \sim 2.8 \cdot 10^{-4}$)
- Requires excellent momentum resolution $\left(\frac{\Delta p_T}{p_T^2} \le 2 \cdot 10^{-5} GeV^{-1}\right)$ in the barrel, also in the forward region $\left(\frac{\Delta p_T}{p_T^2} \sim 10^{-4} GeV^{-1}\right)$
- $v_e v_e h \rightarrow \mu^- \mu^+$ CLIC Higgs physics CDR benchmark addressed at both 3 TeV [LCD-Note-2011-035] and 1.4 TeV

CLIC - SiD

I. Bozovic-Jelisavcic

ECFA LC2013 DESY, Hamburg 27-31 May 2013

- Challenging p_{τ} muon reconstruction down to the lowest angles \Rightarrow translates into $m(\mu\mu)$ mass width
- Iron yoke instrumented with 9 active layers for μ identification
- Momentum resolution has $\stackrel{1}{--}$ dependence due to multiple p_T scattering

 $\frac{\Delta p_T}{2}$: 1.1 · 10⁻⁴ - 3.5 · 10⁻⁵ GeV⁻¹ depending on the θ region p_T^2

ECFA LC2013 DESY, Hamburg 27-31 May 2013

I. Bozovic-Jelisavcic

Higgs decays

I. Bozovic-Jelisavcic ECFA LC2013 DESY, Hamburg

27-31 May 2013

27-31 May 2013

Event simulation

- Event sample: 1.5 ab⁻¹ (2 ab⁻¹) corresponding to 4 years operation with 50% data taking efficiency at 1.4 TeV (3 TeV)
- Large main background samples in order to extract PDFs
- Event generation: WHIZARD 1.95 (+ISR), x-angle 20 mrad (Lorentz boost of the final state particles), Higgs decay: PYTHIA 6.4 (+FSR), Lumi spectrum: GuineaPig 1.4.4
- Preselection:
 - Two reconstructed muons
 - $p_T > 5$ GeV preselection
 - (105-135) GeV di-muon mass window

• Expected shape of data (signal + background) has to be fitted (unbinned likelihood fit) by the invariant mass shapes estimated in simulation to derive the number of signal events: $\sigma_{ww \ fusion} \cdot BR(h \rightarrow \mu^{+}\mu^{-}) = N/(L \cdot \varepsilon_{S})$

- Sufficient number of Toy MC experiments (i.e. 1000) gives estimates of N_{S}

• Toy MC: samples drown from the fully simulated signal events + bck PDFs to generate random event samples $(N_i = \sigma_i \cdot \varepsilon_i \cdot L)$

 One needs as large as possible statistics to describe the signal and background (extract PDFs)

Multivariate approach in background suppression

 $e^+e^- \rightarrow e^+e^-\mu^+\mu^-$ at 1.4 TeV

ECFA LC2013 DESY, Hamburg 27-31 May 2013

Di-muon invariant mass fit and BR extraction

Signal PDFs

Background PDFs

• Expected shape of data (signal + background) is for each Toy MC fitted with $f=k \cdot f_S + (1-k) \cdot f_{BDK} \Rightarrow N_S = k \cdot \int f \, dm$, integration range 105-135 GeV

 ${\scriptstyle \bullet}$ Make N_s and pull distributions to estimate N_S uncertainties and proves the shape descriptions with PDFs

ECFA LC2013 DESY, Hamburg 27-31 May 2013

3 TeV 50 Entries Events / 0.5 GeV Entrie 1000 60 Mean -0.0004632±0.03226 40 1.02 ± 0.0228 RMS 38.08 ± 1.54 0.005103 ± 0.034360 Mear 30 1.014±0.026 Sloma 20 20 10 0 105 $2 4 \Delta(N_S) / \sigma(N_S)$ 110 115 120 -2 0 125 130 135 Di-muon invariant mass [GeV] 1.4 TeV րյուն Enii kee Maan RM9 10000 -0.0129 1.014 450 400 350 Events / (0.4 GeV) $N_{\rm h} = 1546 \pm 40$ 50 $N_s=~37\pm10$ 40 300 30 250 200 20 150Ē 100Ē 10 50Ē 0 Θ. 105 115 120 125 130 135 140 110 2 з -5 1 4 з D $\sqrt{s_{\mu\mu}}$ (GeV) pull I. Bozovic-Jelisavcic ECFA LC2013 DESY, Hamburg 27-31 May 2013

Toy MC experiments

Results

3 TeV	h→μμ
Signal events	53±14
Signal efficiency	21.7%
$\sigma_{h\nu\nu} xBR_{h \to \mu\mu}$	0.121fb
Stat. uncertainty	26.3%

1.4 TeV	h→μμ
Signal events	34±10
Signal efficiency	43.0%
$\sigma_{h\nu\nu} xBR_{h \to \mu\mu}$	0.052fb
Stat. uncertainty	30.0%

Impact of momentum resolution and forward electron tagging

	LumiCalCut95	LumiCalCut99	BeamCalCut ₃₀	BeamCalCut ₇₀
Signal events	120 ± 17	127 ± 18	130 ± 18	132 ± 18
Signal efficiency	49.3%	53.2%	55.1%	55.9%
$\sigma_{h\nu_e\overline{\nu}_e} imes BR_{h \to \mu^+\mu^-}$	0.121 fb	0.119 fb	0.118 fb	0.118 fb
Stat. uncertainty 23	3.3%→ 15.0%	14.3%	14.1%	13.8%

- $BR(h \rightarrow \mu^+ \mu^-)$ tests excellent momentum resolution
- Forward region calorimetry plays important role to veto electron spectators from 4-f processes

$\sigma(\Delta p_{\rm T})/p_{\rm T}^2$	$\sigma({\rm DM}({\rm mm}))$	Stat. uncertainty
$10^{-3}{ m GeV^{-1}}$	6.5 GeV	-
$10^{-4}{ m GeV^{-1}}$	0.70 GeV	34.3%
$10^{-5}{ m GeV^{-1}}$	0.068 GeV	18.2%
$10^{-6} {\rm GeV^{-1}}$	$0.022{ m GeV}$	16.0%

27-31 May 2013

I. Bozovic-Jelisavcic

Conclusions

• There is strong motivation in physics BSM in BR measurement of the rare $h \rightarrow \mu^+ \mu^-$ decay at CLIC.

•The measurement itself tests excellent muon identification and momentum resolution of the detector.

• It has been shown that $BR(h \rightarrow \mu^+ \mu^-)$ can be measured with a statistical accuracy $\leq 30\%$, at both 1.4 and 3 TeV CLIC assuming 4 years of operation.

• Systematic uncertainties are estimated to be negligible compared to the statistical uncertainty.

ECFA LC2013 DESY, Hamburg

27-31 May 2013

Additional material

ECFA LC2013 DESY, Hamburg

27-31 May 2013

Event samples and x-sections

Process 3 TeV	σ [fb]	Nevents	Short label
$e^+e^- \rightarrow h\nu_e\overline{\nu}_e; h \rightarrow \mu^+\mu^- (signal)$	0.120	21000	$h {\rightarrow} \mu^+ \mu^-$
$e^+e^- \rightarrow \mu^+\mu^-\nu\overline{\nu}$ $e^+e^- \rightarrow \mu^+\mu^-e^+e^-$	132 346 ^A	5000000 1350000	μ+μ-ν ν μ+μ-e+e-
$\begin{array}{c} e^+e^- \rightarrow \mu^+\mu^- \\ e^+e^- \rightarrow \tau^+\tau^- \\ e^+e^- \rightarrow \tau^+\tau^-\nu\overline{\nu} \end{array}$	12 ^B 250 125	10000 100000 100000	$\begin{array}{l} \mu^+\mu^- \\ \tau^+\tau^- \\ \tau^+\tau^- \nu\overline{\nu} \end{array}$
$\gamma\gamma \to \mu^+\mu^- ~(\text{generator level only})$	20000 ^B	1000000	$\gamma\gamma {\rightarrow} \mu^+\mu^-$

^A Including a cut of $100 \text{ GeV} < M(\mu\mu) < 140 \text{ GeV}$ and requiring a minimum polar angle for both muons of 8°.

^B Including a cut of $100 \text{ GeV} < M(\mu\mu) < 140 \text{ GeV}$.

Process	1.4 TeV	σ[fb]	N _{events}	Short label
$e^+e^- \to h v_e \bar{v}$	$\overline{\mu_{e}}; h \to \mu^{\dagger} \mu^{-} (signal)$	0.0522	24000	$h \rightarrow \mu^+ \mu^-$
$e^+e^- \rightarrow \mu^+\mu$	\overline{vvv}	129	236000	$\mu^+\mu^-\nu^-\overline{\nu}$
$e^+e^- \rightarrow \mu^+\mu$	t ⁻ e ⁺ e ⁻	431 ^A	1000000	$\mu^+\mu^-e^+e^-$
$e^{\pm}\gamma \rightarrow e^{\pm}\mu^{+}$	μ-	1280(x2) ^A	2000000	$e^{\pm}\mu^{+}\mu^{-}$

^A Including a cut of $100 GeV < M(\mu^+\mu^-) < 140 GeV$ and requiring a minimum polar angle for both muons of 8°.

Toy MC signal (1.4 TeV)

ECFA LC2013 DESY, Hamburg 27-31 May 2013

I. Bozovic-Jelisavcic

σ_{BR} relative statistical error vs. BDT_{cut}

ECFA LC2013 DESY, Hamburg 27-31 May 2013

I. Bozovic-Jelisavcic